首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2017 ,2017-06-14
The Contribution of Geomagnetic Activity to Polar Ozone Changes in the Upper Atmosphere
Research Article
Cong Huang 1 , 2 Fuxiang Huang 3 Xiaoxin Zhang 1 Dandan Liu 1 Jingtian Lv 1
Show affiliations
DOI:10.1155/2017/1729454
Received 2017-03-10, accepted for publication 2017-05-23, Published 2017-05-23
PDF
摘要

Energetic particle precipitation (EPP) has significant impacts on ozone depletion in the polar middle atmosphere during geomagnetic activity. It is well known that solar ultraviolet (UV) radiation plays an important role in ozone generation. Therefore, it is interesting to compare the contributions of EPP and solar UV to ozone changes in the polar upper atmosphere. In this article, we use the annual average Ap index to denote the annual-mean magnitude of the geomagnetic activity, which is closely correlated with the EPP flux, and the annual average F10.7 index to denote the annual-mean magnitude of the solar radiation, which is somewhat related to the solar UV. We adopt the 5° zonal annual-mean ozone profile dataset to study the statistical characters between the ozone dataset and the Ap, F10.7 indices. Multiple regression analysis shows that the contributions of geomagnetic activity are not negligible and are of a similar order of magnitude as the solar UV radiation in the polar upper atmosphere (above 10 hPa). The results also show that high-speed solar-wind-stream-induced and coronal-mass-ejection-driven geomagnetic activity is of the same order of magnitude. There are interhemispheric differences according to our multiple regression analysis. We discuss the possible causes of these differences.

授权许可

Copyright © 2017 Cong Huang et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The annual-mean ozone thickness anomalies relative to 40 DU (Dobson Unit) above 10 hPa over latitude range from 60° to 90° from 1979 to 2012. We averaged ozone data in this latitude range with considering the latitude weight. The blue squares and red spots connected with dash lines denote the data points of the NH and the SH, respectively.

The annual-mean EI (Energy Index, see it in Section 2.3) anomalies of Ap (histograms) and F10.7 (blue line) indices relative to Ap = 5 and F10.7 = 60, respectively. The red and shadow columns denote Ap-HSSWS and Ap-CME, respectively.

The energy index (EI) of F10.7 (a), CME (b), and HSSWS (c) versus the polar ozone relative anomalies in the SH. The red dash lines are linear fittings of the points.

The energy index (EI) of F10.7 (a), CME (b), and HSSWS (c) versus the polar ozone relative anomalies in the SH. The red dash lines are linear fittings of the points.

The energy index (EI) of F10.7 (a), CME (b), and HSSWS (c) versus the polar ozone relative anomalies in the SH. The red dash lines are linear fittings of the points.

(a) The northern polar ozone relative anomalies (blue squares connected with dash lines) and the EESC data (red spots connected with dash lines); (b) the correlation between the northern polar ozone relative anomalies and the EESC data, the red dash line is the linear fitting of the points; (c) the northern polar ozone relative anomalies after detrending the EESC effects (blue squares connected with dash lines). NH-Ovar∗ denotes that the ozone data of NH has detrended the EESC effects.

(a) The northern polar ozone relative anomalies (blue squares connected with dash lines) and the EESC data (red spots connected with dash lines); (b) the correlation between the northern polar ozone relative anomalies and the EESC data, the red dash line is the linear fitting of the points; (c) the northern polar ozone relative anomalies after detrending the EESC effects (blue squares connected with dash lines). NH-Ovar∗ denotes that the ozone data of NH has detrended the EESC effects.

(a) The northern polar ozone relative anomalies (blue squares connected with dash lines) and the EESC data (red spots connected with dash lines); (b) the correlation between the northern polar ozone relative anomalies and the EESC data, the red dash line is the linear fitting of the points; (c) the northern polar ozone relative anomalies after detrending the EESC effects (blue squares connected with dash lines). NH-Ovar∗ denotes that the ozone data of NH has detrended the EESC effects.

As Figure 3, but for the northern polar ozone (after detrending EESC effects). NH-Ovar∗ denotes that the ozone data of NH has detrended the EESC effects.

As Figure 3, but for the northern polar ozone (after detrending EESC effects). NH-Ovar∗ denotes that the ozone data of NH has detrended the EESC effects.

As Figure 3, but for the northern polar ozone (after detrending EESC effects). NH-Ovar∗ denotes that the ozone data of NH has detrended the EESC effects.

通讯作者

Cong Huang.Key Laboratory of Space Weather, National Satellite Meteorological Center, China Meteorological Administration, Beijing 100081, China, cma.gov.cn;CAS Key Laboratory of Geospace Environment, University of Science and Technology of China, Chinese Academy of Sciences, Hefei 230026, China, ustc.edu.huangc@cma.gov.cn

推荐引用方式

Cong Huang,Fuxiang Huang,Xiaoxin Zhang,Dandan Liu,Jingtian Lv. The Contribution of Geomagnetic Activity to Polar Ozone Changes in the Upper Atmosphere. Advances in Meteorology ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
1

是否收藏?

参考文献
[1] P. J. Nair, S. Godin-Beekmann, J. Kuttippurath, G. Ancellet. et al.(2013). Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station. Atmospheric Chemistry and Physics.13(20):10373-10384. DOI: 10.1016/0032-0633(73)90126-8.
[2] A. Seppälä, M. A. Clilverd, C. J. Rodger. (2007). NOx enhancements in the middle atmosphere during 2003-2004 polar winter: relative significance of solar proton events and the aurora as a source. Journal of Geophysical Research Atmospheres.112(23, article D23303). DOI: 10.1016/0032-0633(73)90126-8.
[3] A. J. G. Baumgaertner, P. Jöckel, C. Brühl. (2009). Energetic particle precipitation in ECHAM5/MESSy1-Part 1: downward transport of upper atmospheric NOx produced by low energy electrons. Atmospheric Chemistry and Physics.9(8):2729-2740. DOI: 10.1016/0032-0633(73)90126-8.
[4] W. Swider, T. J. Keneshea. (1973). Decrease of ozone and atomic oxygen in the lower mesosphere during a PCA event. Planetary and Space Science.21(11):1969-1973. DOI: 10.1016/0032-0633(73)90126-8.
[5] E. Rozanov, M. Calisto, T. Egorova, T. Peter. et al.(2012). Influence of the precipitating energetic particles on atmospheric chemistry and climate. Surveys in Geophysics.33(3-4):483-501. DOI: 10.1016/0032-0633(73)90126-8.
[6] P. K. Bhartia, R. D. McPeters, C. L. Mateer, L. E. Flynn. et al.(1996). Algorithm for the estimation of vertical ozone profiles from the backscattered ultraviolet technique. Journal of Geophysical Research.101(D13):18793-18806. DOI: 10.1016/0032-0633(73)90126-8.
[7] L. E. Flynn, D. McNamara, C. T. Beck, I. Petropavlovskikh. et al.(2009). Measurements and products from the Solar Backscatter Ultraviolet (SBUV/2) and Ozone Mapping and Profiler Suite (OMPS) instruments. International Journal of Remote Sensing.30(15-16):4259-4272. DOI: 10.1016/0032-0633(73)90126-8.
[8] T. Von Clarmann, B. Funke, M. López-Puertas, S. Kellmann. et al.(2013). The solar proton events in 2012 as observed by MIPAS. Geophysical Research Letters.40(10):2339-2343. DOI: 10.1016/0032-0633(73)90126-8.
[9] W. Chehade, M. Weber, J. P. Burrows. (2014). Total ozone trends and variability during 1979–2012 from merged data sets of various satellites. Atmospheric Chemistry and Physics.14(13):7059-7074. DOI: 10.1016/0032-0633(73)90126-8.
[10] D. A. Degenstein, N. D. Lloyd, A. E. Bourassa, R. L. Gattinger. et al.(2005). Observations of mesospheric ozone depletion during the October 28, 2003 solar proton event OSIRIS. Geophysical Research Letters.32(3):1-4. DOI: 10.1016/0032-0633(73)90126-8.
[11] J. E. Frederick. (1976). Solar corpuscular emission and neutral chemistry in the earth's middle atmosphere. Journal of Geophysical Research.81(19):3179-3186. DOI: 10.1016/0032-0633(73)90126-8.
[12] L. B. Callis, M. Natarajan, J. D. Lambeth, D. N. Baker. et al.(1998). Solar atmospheric coupling by electrons (SOLACE) 2. Calculated stratospheric effects of precipitating electrons, 1979–1988. Journal of Geophysical Research.103(28):28421-28438. DOI: 10.1016/0032-0633(73)90126-8.
[13] B. Funke, M. López-Puertas, S. Gil-López. (2005). Downward transport of upper atmospheric NOx into the polar stratosphere and lower mesosphere during the Antarctic 2003 and Arctic 2002/2003 winters. Journal of Geophysical Research.110(D24). DOI: 10.1016/0032-0633(73)90126-8.
[14] World Meteorological Organization (WMO). (2010). Scientific Assessment of Ozone Depletion: 2010, Executive Summary, the Scientific Assessment Panel of the Montreal Protocol on Substances that Deplete the Ozone Layer Report. DOI: 10.1016/0032-0633(73)90126-8.
[15] P. J. Crutzen, I. S. A. Isaksen, G. C. Reid. (1975). Solar proton events: stratospheric sources of nitric oxide. Science.189(4201):457-459. DOI: 10.1016/0032-0633(73)90126-8.
[16] S. Frith, R. McPeters, N. Kramarova, and.. et al.A 40-year Record of Profile Ozone from the SBUV(/2) Instrument Series. . DOI: 10.1016/0032-0633(73)90126-8.
[17] J. Kuttippurath, G. E. Bodeker, H. K. Roscoe, P. J. Nair. et al.(2015). A cautionary note on the use of EESC-based regression analysis for ozone trend studies. Geophysical Research Letters.42(1):162-168. DOI: 10.1016/0032-0633(73)90126-8.
[18] A. Seppälä, P. T. Verronen, E. Kyrölä, S. Hassinen. et al.(2004). Solar proton events of October-November 2003: ozone depletion in the Northern hemisphere polar winter as seen by GOMOS/Envisat. Geophysical Research Letters.31(19):L19107-4. DOI: 10.1016/0032-0633(73)90126-8.
[19] D. E. Siskind, G. E. Nedoluha, C. E. Randall, M. Fromm. et al.(2000). An assessment of Southern Hemisphere stratospheric NO(x) enhancements due to transport from the upper atmosphere. Geophysical Research Letters.27(3):329-332. DOI: 10.1016/0032-0633(73)90126-8.
[20] R. S. Stolarski, A. R. Douglass, S. Steenrod, S. Pawson. et al.(2006). Trends in stratospheric ozone: lessons learned from a 3D chemical transport model. Journal of the Atmospheric Sciences.63(3):1028-1041. DOI: 10.1016/0032-0633(73)90126-8.
[21] G. C. Reinsel, E. Weatherhead, G. C. Tiao, A. J. Miller. et al.(2002). On detection of turnaround and recovery in trend for ozone. Journal of Geophysical Research.107(D10):ACH 1-1-ACH 1-12. DOI: 10.1016/0032-0633(73)90126-8.
[22] C. E. Randall, V. L. Harvey, G. L. Manney. (2005). Stratospheric effects of energetic particle precipitation in 2003-2004. Geophysical Research Letters.32(5). DOI: 10.1016/0032-0633(73)90126-8.
[23] I. G. Richardson, H. V. Cane. (2010). Near-earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): catalog and summary of properties. Solar Physics.264(1):189-237. DOI: 10.1016/0032-0633(73)90126-8.
[24] C. E. Randall, V. L. Harvey, C. S. Singleton. (2007). Energetic particle precipitation effects on the Southern Hemisphere stratosphere in 1991–2005. Journal of Geophysical Research.112, article D08308. DOI: 10.1016/0032-0633(73)90126-8.
[25] M. López-Puertas, B. Funke, S. Gil-López, T. Von Clarmann. et al.(2005). Observation of NOx enhancement and ozone depletion in the Northern and Southern Hemispheres after the October-November 2003 solar proton events. Journal of Geophysical Research.110(9, article A09S43). DOI: 10.1016/0032-0633(73)90126-8.
[26] M. Sinnhuber, H. Nieder, N. Wieters. (2012). Energetic particle precipitation and the chemistry of the mesosphere/lower thermosphere. Surveys in Geophysics.33(6):1281-1334. DOI: 10.1016/0032-0633(73)90126-8.
[27] M. Sinnhuber, S. Kazeminejad, J. M. Wissing. (2011). Interannual variation of NOx from the lower thermosphere to the upper stratosphere in the years 1991–2005. Journal of Geophysical Research.116(2). DOI: 10.1016/0032-0633(73)90126-8.
[28] S. Solomon, D. W. Rusch, J. C. Gérard, G. C. Reid. et al.(1981). The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere: II. Odd hydrogen. Planetary and Space Science.29(8):885-893. DOI: 10.1016/0032-0633(73)90126-8.
[29] G. Rohen, C. Von Savigny, M. Sinnhuber, E. J. Llewellyn. et al.(2005). Ozone depletion during the solar proton events of October/November 2003 as seen by SCIAMACHY. Journal of Geophysical Research.110(9). DOI: 10.1016/0032-0633(73)90126-8.
[30] D. W. Rusch, J.-C. Gérard, S. Solomon, P. J. Crutzen. et al.(1981). The effect of particle precipitation events on the neutral and ion chemistry of the middle atmosphere-I. Odd nitrogen. Planetary and Space Science.29(7):767-774. DOI: 10.1016/0032-0633(73)90126-8.
[31] A. Seppälä, P. T. Verronen, M. A. Clilverd, C. E. Randall. et al.(2007). Arctic and Antarctic polar winter NOx and energetic particle precipitation in 2002–2006. Geophysical Research Letters.34(12, article L12810). DOI: 10.1016/0032-0633(73)90126-8.
[32] A. Seppälä, C. E. Randall, M. A. Clilverd, E. Rozanov. et al.(2009). Geomagnetic activity and polar surface air temperature variability. Journal of Geophysical Research.114(A10). DOI: 10.1016/0032-0633(73)90126-8.
[33] World Meteorological Organization (WMO). Scientific Assessment of Ozone Depletion: 2006. DOI: 10.1016/0032-0633(73)90126-8.
[34] A. Seppälä, H. Lu, M. A. Clilverd, C. J. Rodger. et al.(2013). Geomagnetic activity signatures in wintertime stratosphere wind, temperature, and wave response. Journal of Geophysical Research Atmospheres.118(5):2169-2183. DOI: 10.1016/0032-0633(73)90126-8.
[35] I. Wohltmann, R. Lehmann, M. Rex, D. Brunner. et al.(2007). A process-oriented regression model for column ozone. Journal of Geophysical Research.112(D12, article D12304). DOI: 10.1016/0032-0633(73)90126-8.
[36] S. Solomon, G. C. Reid, D. W. Rusch, R. J. Thomas. et al.(1983). Mesospheric ozone depletion during the solar proton event of july 13, 1982 part II. Comparison between theory and measurements. Geophysical Research Letters.10(4):257-260. DOI: 10.1016/0032-0633(73)90126-8.
[37] P. Mayaud. (1980). Derivation, Meaning and Use of Geomagnetic Indices.22. DOI: 10.1016/0032-0633(73)90126-8.
[38] C. H. Jackman, D. R. Marsh, F. M. Vitt, R. R. Garcia. et al.(2008). Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmospheric Chemistry and Physics.8(3):765-785. DOI: 10.1016/0032-0633(73)90126-8.
[39] I. G. Richardson, E. W. Cliver, H. V. Cane. (2000). Sources of geomagnetic activity over the solar cycle: relative importance of coronal mass ejections, high-speed streams, and slow solar wind. Journal of Geophysical Research.105(8):18203-18213. DOI: 10.1016/0032-0633(73)90126-8.
[40] N. Gopalswamy. (2008). Solar connections of geoeffective magnetic structures. Journal of Atmospheric and Solar-Terrestrial Physics.70(17):2078-2100. DOI: 10.1016/0032-0633(73)90126-8.
[41] J. Zhang, I. G. Richardson, D. F. Webb, N. Gopalswamy. et al.(2007). Solar and interplanetary sources of major geomagnetic storms (DST ≤ 100 nT) during 1996–2002. Journal of Geophysical Research.112(A10). DOI: 10.1016/0032-0633(73)90126-8.
[42] D. V. Reames. (1999). Particle acceleration at the sun and in the heliosphere. Space Science Reviews.90(3-4):413-491. DOI: 10.1016/0032-0633(73)90126-8.
[43] C. H. Jackman, M. T. DeLand, G. J. Labow, E. L. Fleming. et al.(2005). The influence of the several very large solar proton events in years 2000-2003 on the neutral middle atmosphere. Advances in Space Research.35(3):445-450. DOI: 10.1016/0032-0633(73)90126-8.
[44] C. H. Jackman, R. D. McPeters. (1985). The response of ozone to solar proton events during solar cycle 21: a theoretical interpretation. Journal of Geophysical Research.90(5):7955-7966. DOI: 10.1016/0032-0633(73)90126-8.
[45] L. H. Weeks, R. S. Cuikay, J. R. Corbin. (1972). Ozone measurements in the mesosphere during the solar proton event of 2 november 1969. Journal of the Atmospheric Sciences.29(6):1138-1142. DOI: 10.1016/0032-0633(73)90126-8.
[46] C. H. Jackman, M. T. DeLand, G. J. Labow, E. L. Fleming. et al.(2005). Neutral atmospheric influences of the solar proton events in October-November 2003. Journal of Geophysical Research.110(A9). DOI: 10.1016/0032-0633(73)90126-8.
[47] D. F. Heath, A. J. Krueger, P. J. Crutzen. (1977). Solar proton event: Influence on stratospheric ozone. Science.197(4306):886-889. DOI: 10.1016/0032-0633(73)90126-8.
[48] R. D. McPeters, C. H. Jackman, E. G. Stassinopoulos. (1981). Observations of ozone depletion associated with solar proton events. Journal of Geophysical Research.86(C12):12071. DOI: 10.1016/0032-0633(73)90126-8.
[49] C. E. Randall, D. W. Rusch, R. M. Bevilacqua. (1993). Polar ozone and aerosol measurement (POAM) II strato-spheric NO, 1993–1996. Journal of Geophysical Research.103(28):28361-28371. DOI: 10.1016/0032-0633(73)90126-8.
[50] G. P. Brasseur, S. Solomon. (2005). Aeronomy of the Middle Atmosphere. DOI: 10.1016/0032-0633(73)90126-8.
[51] B.-M. Sinnhuber, P. Von Der Gathen, M. Sinnhuber, M. Rex. et al.(2006). Large decadal scale changes of polar ozone suggest solar influence. Atmospheric Chemistry and Physics.6(7):1835-1841. DOI: 10.1016/0032-0633(73)90126-8.
[52] E. Rozanov, L. Callis, M. Schlesinger, F. Yang. et al.(2005). Atmospheric response to NO source due to energetic electron precipitation. Geophysical Research Letters.32(14). DOI: 10.1016/0032-0633(73)90126-8.
[53] R. D. McPeters, P. K. Bhartia, D. Haffner, G. J. Labow. et al.(2013). The version 8.6 SBUV ozone data record: an overview. Journal of Geophysical Research Atmospheres.118(14):8032-8039. DOI: 10.1016/0032-0633(73)90126-8.
[54] W. D. Gonzalez, J. A. Joselyn, Y. Kamide, H. W. Kroehl. et al.(1994). What is a geomagnetic storm?. Journal of Geophysical Research.99(A4):5771-5792. DOI: 10.1016/0032-0633(73)90126-8.
[55] N. A. Kramarova, S. M. Frith, P. K. Bhartia, R. D. McPeters. et al.(2013). Validation of ozone monthly zonal mean profiles obtained from the Version 8.6 Solar Backscatter Ultraviolet algorithm. Atmospheric Chemistry and Physics Discussions.13(1):2549-2597. DOI: 10.1016/0032-0633(73)90126-8.
[56] G. C. Reid, S. Solomon, R. R. Garcia. (1991). Response of the middle atmosphere to the solar proton events of August–December, 1989. Geophysical Research Letters.18(6):1019-1022. DOI: 10.1016/0032-0633(73)90126-8.
[57] C. H. Jackman, C. E. Randall, V. L. Harvey, S. Wang. et al.(2014). Middle atmospheric changes caused by the January and March 2012 solar proton events. Atmospheric Chemistry and Physics.14(2):1025-1038. DOI: 10.1016/0032-0633(73)90126-8.
[58] A. M. Zadorozhny, G. A. Tuchkov, V. N. Kikhtenko, J. Laštovička. et al.(1992). Nitric oxide and lower ionosphere quantities during solar particle events of October 1989 after rocket and ground-based measurements. Journal of Atmospheric and Terrestrial Physics.54(2):183-192. DOI: 10.1016/0032-0633(73)90126-8.
[59] K. Maeda, D. F. Heath. (1980). Stratospheric ozone response to a solar proton event: Hemispheric asymmetries. Pure and Applied Geophysics PAGEOPH.119(1):1-8. DOI: 10.1016/0032-0633(73)90126-8.
[60] C. H. Jackman, R. D. McPeters, G. J. Labow, E. L. Fleming. et al.(2001). Northern hemisphere atmospheric effects due to the July 2000 solar proton event. Geophysical Research Letters.28(15):2883-2886. DOI: 10.1016/0032-0633(73)90126-8.
[61] K. Kodera, Y. Kuroda. (2002). Dynamical response to the solar cycle. Journal of Geophysical Research.107(D24). DOI: 10.1016/0032-0633(73)90126-8.
[62] L. J. Gary, S. J. Phipps, T. J. Dunkerton, M. P. Baldwin. et al.(2001). A data study of the influence of the equatorial upper stratosphere on northern-hemisphere stratospheric sudden warnings. Quarterly Journal of the Royal Meteorological Society.127(576):1985-2003. DOI: 10.1016/0032-0633(73)90126-8.
[63] A. Seppälä, M. A. Clilverd, C. J. Rodger, P. T. Verronen. et al.(2008). The effects of hard-spectra solar proton events on the middle atmosphere. Journal of Geophysical Research.113(A11). DOI: 10.1016/0032-0633(73)90126-8.
文献评价指标
浏览 252次
下载全文 49次
评分次数 1次
用户评分 5.0分
分享 1次