首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2017 ,2017-06-12
Forest Evapotranspiration and Energy Flux Partitioning Based on Eddy Covariance Methods in an Arid Desert Region of Northwest China
Research Article
Xiaohong Ma 1 , 2 , 3 , 4 Qi Feng 1 , 2 , 3 Yonghong Su 1 , 2 , 3 Tengfei Yu 1 , 2 , 3 Hua Jin 1 , 2 , 3 , 4
Show affiliations
DOI:10.1155/2017/1619047
Received 2017-02-17, accepted for publication 2017-05-15, Published 2017-05-15
PDF
摘要

In this study, the characteristics of energy flux partitioning and evapotranspiration of P. euphratica forests were examined in the extreme arid region of Northwest China. Energy balance closure of the ecosystem was approximately 72% (H + LE = 0.72 ∗ (Rn-G)+7.72, r2=0.79, n=12095), where Rn is the net radiation, G is the soil heat flux, H is the sensible heat flux, and LE is the latent heat flux. LE was the main term of energy consumption at annual time scale because of higher value in the growing season. The ratios of the latent (LE) and sensible (H) heat fluxes to net radiation were 0.47 and 0.28 throughout the year, respectively. Moreover, the yearly evapotranspiration of P. euphratica forests was 744 mm year−1. And the mean daily ET was 5.09 mm·d−1 in the vibrant growing season. In particular, a small spike in the actual evapotranspiration distribution occurred during the soil ablation period due to the higher temperature and sufficient soil moisture associated with soil thawing. This period is accompanied by a series of physical processes, such as moisture transfer and heat exchange.

授权许可

Copyright © 2017 Xiaohong Ma et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Location and photograph of observation site.

Seasonal variation of daily average air temperature (Ta), daily average photosynthetic active radiation (PAR), daily average soil temperature (Ts), daily average potential evapotranspiration (EVP), daily average vapor pressure deficit (VPD), daily average soil volumetric water content (θv), and daily total precipitation (P).

Seasonal variation of daily average air temperature (Ta), daily average photosynthetic active radiation (PAR), daily average soil temperature (Ts), daily average potential evapotranspiration (EVP), daily average vapor pressure deficit (VPD), daily average soil volumetric water content (θv), and daily total precipitation (P).

Seasonal variation of daily average air temperature (Ta), daily average photosynthetic active radiation (PAR), daily average soil temperature (Ts), daily average potential evapotranspiration (EVP), daily average vapor pressure deficit (VPD), daily average soil volumetric water content (θv), and daily total precipitation (P).

Seasonal variation of daily average air temperature (Ta), daily average photosynthetic active radiation (PAR), daily average soil temperature (Ts), daily average potential evapotranspiration (EVP), daily average vapor pressure deficit (VPD), daily average soil volumetric water content (θv), and daily total precipitation (P).

Seasonal variation of daily average air temperature (Ta), daily average photosynthetic active radiation (PAR), daily average soil temperature (Ts), daily average potential evapotranspiration (EVP), daily average vapor pressure deficit (VPD), daily average soil volumetric water content (θv), and daily total precipitation (P).

Seasonal variation of daily average air temperature (Ta), daily average photosynthetic active radiation (PAR), daily average soil temperature (Ts), daily average potential evapotranspiration (EVP), daily average vapor pressure deficit (VPD), daily average soil volumetric water content (θv), and daily total precipitation (P).

Averaged diurnal variations of net radiation flux (Rn), latent heat flux (LE), sensible heat flux (H), and soil heat flux (G) in the following periods: (a) the soil-frozen period (DOY 326–64); (b) the soil ablation period (DOY 65–130); (c) the germination, flowering, and leaf expansion period (DOY 131–169); (d) the vibrant growing season (DOY 170–253); (e) the leaf senescence period (DOY 254–288); and (f) the early soil-frozen period (DOY 289–322).

Averaged diurnal variations of net radiation flux (Rn), latent heat flux (LE), sensible heat flux (H), and soil heat flux (G) in the following periods: (a) the soil-frozen period (DOY 326–64); (b) the soil ablation period (DOY 65–130); (c) the germination, flowering, and leaf expansion period (DOY 131–169); (d) the vibrant growing season (DOY 170–253); (e) the leaf senescence period (DOY 254–288); and (f) the early soil-frozen period (DOY 289–322).

Averaged diurnal variations of net radiation flux (Rn), latent heat flux (LE), sensible heat flux (H), and soil heat flux (G) in the following periods: (a) the soil-frozen period (DOY 326–64); (b) the soil ablation period (DOY 65–130); (c) the germination, flowering, and leaf expansion period (DOY 131–169); (d) the vibrant growing season (DOY 170–253); (e) the leaf senescence period (DOY 254–288); and (f) the early soil-frozen period (DOY 289–322).

Averaged diurnal variations of net radiation flux (Rn), latent heat flux (LE), sensible heat flux (H), and soil heat flux (G) in the following periods: (a) the soil-frozen period (DOY 326–64); (b) the soil ablation period (DOY 65–130); (c) the germination, flowering, and leaf expansion period (DOY 131–169); (d) the vibrant growing season (DOY 170–253); (e) the leaf senescence period (DOY 254–288); and (f) the early soil-frozen period (DOY 289–322).

Averaged diurnal variations of net radiation flux (Rn), latent heat flux (LE), sensible heat flux (H), and soil heat flux (G) in the following periods: (a) the soil-frozen period (DOY 326–64); (b) the soil ablation period (DOY 65–130); (c) the germination, flowering, and leaf expansion period (DOY 131–169); (d) the vibrant growing season (DOY 170–253); (e) the leaf senescence period (DOY 254–288); and (f) the early soil-frozen period (DOY 289–322).

Averaged diurnal variations of net radiation flux (Rn), latent heat flux (LE), sensible heat flux (H), and soil heat flux (G) in the following periods: (a) the soil-frozen period (DOY 326–64); (b) the soil ablation period (DOY 65–130); (c) the germination, flowering, and leaf expansion period (DOY 131–169); (d) the vibrant growing season (DOY 170–253); (e) the leaf senescence period (DOY 254–288); and (f) the early soil-frozen period (DOY 289–322).

The annual course of daily average net radiation (Rn), latent (LE), sensible (H), and soil heat fluxes, and the evaporative fraction (EF). (a) to (f) represent six periods: (a) the soil-frozen period; (b) the soil ablation period; (c) the germination, flowering, and leaf expansion period; (d) the vibrant growing season; (e) the leaf senescence period; and (f) the early soil-frozen period.

The variation of groundwater depth (m).

The daily evapotranspiration (ET) and daily reference evapotranspiration (ET0) in the following periods: (a) the soil-frozen period; (b) the soil ablation period; (c) the germination, flowering, and leaf expansion period; (d) the vibrant growing season; (e) the leaf senescence period; and (f) the early soil-frozen period.

Variation of crop coefficient (Kc) at different study periods.

通讯作者

Qi Feng.Northwest Institute of Eco-Environment and Resources, CAS, Lanzhou 730000, China, cas.cn;Key Laboratory of Eco-Hydrology of Inland River Basin, CAS, Lanzhou 730000, China, cas.cn;Alxa Desert Eco-Hydrology Experimental Research Station, Lanzhou 730000, China.qifeng@lzb.ac.cn

推荐引用方式

Xiaohong Ma,Qi Feng,Yonghong Su,Tengfei Yu,Hua Jin. Forest Evapotranspiration and Energy Flux Partitioning Based on Eddy Covariance Methods in an Arid Desert Region of Northwest China. Advances in Meteorology ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. A. Arain, T. A. Black, A. G. Barr, T. J. Griffis. et al.(2003). Year-round observations of the energy and water vapour fluxes above a boreal black spruce forest. Hydrological Processes.17(18):3581-3600. DOI: 10.1016/j.agrformet.2008.07.008.
[2] T. Ohta, A. Kotani, Y. Iijima, T. C. Maximov. et al.(2014). Effects of waterlogging on water and carbon dioxide fluxes and environmental variables in a Siberian larch forest, 1998–2011. Agricultural and Forest Meteorology.188:64-75. DOI: 10.1016/j.agrformet.2008.07.008.
[3] D. D. Baldocchi, C. A. Vogel. (1996). Energy and CO flux densities above and below a temperate broad-leaved forest and a boreal pine forest. Tree Physiology.16(1-2):5-16. DOI: 10.1016/j.agrformet.2008.07.008.
[4] Z. Gaofeng, L. Ling, S. Yonghong, W. Xufeng. et al.(2014). Energy flux partitioning and evapotranspiration in a sub-alpine spruce forest ecosystem. Hydrological Processes.28(19):5093-5104. DOI: 10.1016/j.agrformet.2008.07.008.
[5] J. B. Wu, Y. L. Jing, D. X. Guan, H. Yang. et al.(2013). Controls of evapotranspiration during the short dry season in a temperate mixed forest in Northeast China. Ecohydrology.6(5):775-782. DOI: 10.1016/j.agrformet.2008.07.008.
[6] E. K. Webb, G. I. Pearman, R. Leuning. (1980). Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal Royal Meteorological Society.106(447):85-100. DOI: 10.1016/j.agrformet.2008.07.008.
[7] S. Wafar, A. G. Untawale, M. Wafar. (1997). Litter fall and energy flux in a mangrove ecosystem. Estuarine, Coastal and Shelf Science.44(1):111-124. DOI: 10.1016/j.agrformet.2008.07.008.
[8] R. L. Scott, C. Watts, J. G. Payan, E. Edwards. et al.(2003). The understory and overstory partitioning of energy and water fluxes in an open canopy, semiarid woodland. Agricultural and Forest Meteorology.114(3-4):127-139. DOI: 10.1016/j.agrformet.2008.07.008.
[9] G. Yuan, Y. Luo, M. Shao, P. Zhang. et al.(2015). Evapotranspiration and its main controlling mechanism over the desert riparian forests in the lower Tarim River Basin. Science China Earth Sciences.58(6):1032-1042. DOI: 10.1016/j.agrformet.2008.07.008.
[10] A. G. Barr, A. K. Betts, T. A. Black, J. H. McCaughey. et al.(2001). Intercomparison of BOREAS northern and southern study area surface fluxes in 1994. Journal of Geophysical Research Atmospheres.106(24):33543-33550. DOI: 10.1016/j.agrformet.2008.07.008.
[11] D. G. Williams, W. Cable, K. Hultine, J. C. B. Hoedjes. et al.(2004). Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques. Agricultural and Forest Meteorology.125(3-4):241-258. DOI: 10.1016/j.agrformet.2008.07.008.
[12] K. Wilson, A. Goldstein, E. Falge, M. Aubinet. et al.(2002). Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology.113(1–4):223-243. DOI: 10.1016/j.agrformet.2008.07.008.
[13] Y. Wang, Q. Feng, L. Chen, T. Yu. et al.(2013). Significance and effect of ecological rehabilitation project in inland river basins in Northwest China. Environmental Management.52(1):209-220. DOI: 10.1016/j.agrformet.2008.07.008.
[14] C. J. Moore. (1986). Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorology.37(1-2):17-35. DOI: 10.1016/j.agrformet.2008.07.008.
[15] X. Xu, G. Zhou, S. Liu, H. Du. et al.(2013). Implications of ice storm damages on the water and carbon cycle of bamboo forests in southeastern China. Agricultural and Forest Meteorology.177:35-45. DOI: 10.1016/j.agrformet.2008.07.008.
[16] L. Gu, T. Meyers, S. G. Pallardy, P. J. Hanson. et al.(2006). Direct and indirect effects of atmospheric conditions and soil moisture on surface energy partitioning revealed by a prolonged drought at a temperate forest site. Journal of Geophysical Research Atmospheres.111(16). DOI: 10.1016/j.agrformet.2008.07.008.
[17] L. Testi, F. Orgaz, F. Villalobos. (2008). Carbon exchange and water use efficiency of a growing, irrigated olive orchard. Environmental and Experimental Botany.63(1-3):168-177. DOI: 10.1016/j.agrformet.2008.07.008.
[18] W. J. Shuttleworth, J. H. C. Gash, C. R. Lloyd, C. J. Moore. et al.(1984). Eddy correlation measurements of energy partition for Amazonian forest. Quarterly Journal of the Royal Meteorological Society.110(466):1143-1162. DOI: 10.1016/j.agrformet.2008.07.008.
[19] Y. Chen, Z. Pang, Y. Chen, W. Li. et al.(2008). Response of riparian vegetation to water-table changes in the lower reaches of Tarim River, Xinjiang Uygur, China. Hydrogeology Journal.16(7):1371-1379. DOI: 10.1016/j.agrformet.2008.07.008.
[20] K. Wilson, D. Baldocchi, M. Aubinet, P. Berbigier. et al.(2002). Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research.38:1294. DOI: 10.1016/j.agrformet.2008.07.008.
[21] F. J. Villalobos, O. Perez-Priego, L. Testi, A. Morales. et al.(2012). Effects of water supply on carbon and water exchange of olive trees. European Journal of Agronomy.40:1-7. DOI: 10.1016/j.agrformet.2008.07.008.
[22] P. J. Mitchell, E. Veneklaas, H. Lambers, S. S. O. Burgess. et al.(2009). Partitioning of evapotranspiration in a semi-arid eucalypt woodland in south-western Australia. Agricultural and Forest Meteorology.149(1):25-37. DOI: 10.1016/j.agrformet.2008.07.008.
[23] D. Baldocchi. (1997). Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. Plant, Cell and Environment.20(9):1108-1122. DOI: 10.1016/j.agrformet.2008.07.008.
[24] W. Shuttleworth, R. Gurney, A. Hsu, J. Ormsby. et al.(1989). FIFE: The Variation in Energy Partition at Surface Flux Sites.186. DOI: 10.1016/j.agrformet.2008.07.008.
[25] C. N. Dahm, J. R. Cleverly, J. E. A. Coonrod, J. R. Thibault. et al.(2002). Evapotranspiration at the land/water interface in a semi-arid drainage basin. Freshwater Biology.47(4):831-843. DOI: 10.1016/j.agrformet.2008.07.008.
[26] S. Ferreira, K. Hjernø, M. Larsen, G. Wingsle. et al.(2006). Proteome profiling of Oliv. upon heat stress. Annals of Botany.98(2):361-377. DOI: 10.1016/j.agrformet.2008.07.008.
[27] X. Peng, J. Heitman, R. Horton, T. Ren. et al.(2015). Field evaluation and improvement of the plate method for measuring soil heat flux density. Agricultural and Forest Meteorology.214-215:341-349. DOI: 10.1016/j.agrformet.2008.07.008.
[28] S. Li, S. Kang, F. Li, L. Zhang. et al.(2008). Vineyard evaporative fraction based on eddy covariance in an arid desert region of Northwest China. Agricultural Water Management.95(8):937-948. DOI: 10.1016/j.agrformet.2008.07.008.
[29] P. Wang, Y. Zhang, J. Yu, G. Fu. et al.(2011). Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, northwestern China. Journal of Plant Ecology.4(1-2):77-90. DOI: 10.1016/j.agrformet.2008.07.008.
[30] Y. Igarashi, T. Kumagai, N. Yoshifuji, T. Sato. et al.(2015). Environmental control of canopy stomatal conductance in a tropical deciduous forest in northern Thailand. Agricultural and Forest Meteorology.202:1-10. DOI: 10.1016/j.agrformet.2008.07.008.
[31] Q. Guo, Q. Feng, J. Li. (2009). Environmental changes after ecological water conveyance in the lower reaches of Heihe River, northwest China. Environmental Geology.58(7):1387-1396. DOI: 10.1016/j.agrformet.2008.07.008.
[32] J. Kochendorfer, E. G. Castillo, E. Haas, W. C. Oechel. et al.(2011). Net ecosystem exchange, evapotranspiration and canopy conductance in a riparian forest. Agricultural and Forest Meteorology.151(5):544-553. DOI: 10.1016/j.agrformet.2008.07.008.
[33] E. Falge, D. Baldocchi, R. Olson, P. Anthoni. et al.(2001). Gap filling strategies for long term energy flux data sets. Agricultural and Forest Meteorology.107(1):71-77. DOI: 10.1016/j.agrformet.2008.07.008.
[34] J. H. Si, Q. Feng, T. F. Yu, C.-Y. Zhao. et al.(2015). Nighttime sap flow and its driving forces for in a desert riparian forest, northwest China. Journal of Arid Land.7(5, article A002):665-674. DOI: 10.1016/j.agrformet.2008.07.008.
[35] D. Baldocchi, E. Falge, L. Gu, R. Olson. et al.(2001). FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. Bulletin of the American Meteorological Society.82(11):2415-2434. DOI: 10.1016/j.agrformet.2008.07.008.
文献评价指标
浏览 164次
下载全文 18次
评分次数 0次
用户评分 0.0分
分享 0次