首页 » 文章 » 文章详细信息
International Journal of Antennas and Propagation Volume 2017 ,2017-05-23
Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site
Research Article
Chunyu Ding 1 , 2 , 3 Yan Su 1 , 2 Shuguo Xing 1 , 2 Shun Dai 1 , 2 Yuan Xiao 1 , 2 , 3 Jianqing Feng 1 , 2 Danqing Liu 4 Chunlai Li 1 , 2
Show affiliations
DOI:10.1155/2017/3013249
Received 2016-12-21, accepted for publication 2017-04-03, Published 2017-04-03
PDF
摘要

In the process of lunar exploration, and specifically when studying lunar surface structure and thickness, the established lunar regolith model is usually a uniform and ideal structural model, which is not well-suited to describe the real structure of the lunar regolith layer. The present study aims to explain the geological structural information contained in the channel 2 LPR (lunar penetrating radar) data. In this paper, the random medium theory and Apollo drilling core data are used to construct a modeling method based on discrete heterogeneous random media, and the simulation data are processed and collected by the electromagnetic numerical method FDTD (finite-difference time domain). When comparing the LPR data with the simulated data, the heterogeneous random medium model is more consistent with the actual distribution of the media in the lunar regolith layer. It is indicated that the interior structure of the lunar regolith layer at the landing site is not a pure lunar regolith medium but rather a regolith-rock mixture, with rocks of different sizes and shapes. Finally, several reasons are given to explain the formation of the geological structures of the lunar regolith layer at the Chang’E 3 landing site, as well as the possible geological stratification structure.

授权许可

Copyright © 2017 Chunyu Ding et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The photos were taken by the panoramic camera on the Yutu rover.

The discrete heterogeneous medium models, (a), (b), (c), and (d), with different autocorrelation lengths of 0.05 m, 0.1 m, 0.2 m, and 0.3 m, respectively.

The discrete heterogeneous medium models, (a), (b), (c), and (d), with different autocorrelation lengths of 0.05 m, 0.1 m, 0.2 m, and 0.3 m, respectively.

The discrete heterogeneous medium models, (a), (b), (c), and (d), with different autocorrelation lengths of 0.05 m, 0.1 m, 0.2 m, and 0.3 m, respectively.

The discrete heterogeneous medium models, (a), (b), (c), and (d), with different autocorrelation lengths of 0.05 m, 0.1 m, 0.2 m, and 0.3 m, respectively.

UWB Ricker pulse waveform.

The simulation result of the random media model (a). The A-Scan of the simulated data is shown in (a). The B-Scan of the simulated data is shown in (b).

The simulation result of the random media model (a). The A-Scan of the simulated data is shown in (a). The B-Scan of the simulated data is shown in (b).

The A-Scan and B-Scan simulation results of the models (a), (b), (c), and (d) and the homogeneous media with the amplitude threshold at 0.003.

B-Scan of the LPR data (a) and the simulated data (b) of the heterogeneous random medium model (b).

B-Scan of the LPR data (a) and the simulated data (b) of the heterogeneous random medium model (b).

Chang’E 3 landing site and the topography of the impact crater C1. (a) is from Arizona State University, and (b) is from the Science and Application Center for Moon and Deep Space Exploration.

Chang’E 3 landing site and the topography of the impact crater C1. (a) is from Arizona State University, and (b) is from the Science and Application Center for Moon and Deep Space Exploration.

The diagram of the interior structure of the lunar regolith layer at the Chang’E 3 landing site.

通讯作者

Yan Su.Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Beijing 100012, China, cas.cn;National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China, cas.cn.suyan@nao.cas.cn

推荐引用方式

Chunyu Ding,Yan Su,Shuguo Xing,Shun Dai,Yuan Xiao,Jianqing Feng,Danqing Liu,Chunlai Li. Numerical Simulations of the Lunar Penetrating Radar and Investigations of the Geological Structures of the Lunar Regolith Layer at the Chang’E 3 Landing Site. International Journal of Antennas and Propagation ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
2

是否收藏?

参考文献
[1] Y. G. Shkuratov, N. V. Bondarenko. (2001). Regolith layer thickness mapping of the moon by radar and optical data. Icarus.149(2):329-338. DOI: 10.1006/icar.2000.6545.
[2] A. T. Basilevsky, A. M. Abdrakhimov, J. W. Head, C. M. Pieters. et al.(2015). Geologic characteristics of the Luna 17/Lunokhod 1 and Chang'E-3/Yutu landing sites, Northwest Mare Imbrium of the Moon. Planetary and Space Science.117:385-400. DOI: 10.1006/icar.2000.6545.
[3] Y. Su, G.-Y. Fang, J.-Q. Feng, S.-G. Xing. et al.(2014). Data processing and initial results of Chang'e-3 lunar penetrating radar. Research in Astronomy and Astrophysics.14(12):1623-1632. DOI: 10.1006/icar.2000.6545.
[4] Z. Y. Ouyang. (2005). Introduction of Lunar Sciences. DOI: 10.1006/icar.2000.6545.
[5] A.-L. Lan, S.-W. Zhang. (2004). Study on the thickness of lunar regolith with microwave radiometer. Romote Sensing Techoeslogy And Application.03:154-158. DOI: 10.1006/icar.2000.6545.
[6] W. Fa, Jin Y.. (2006). Simulation of Multiple-Channels radiance brightness temperature on lunar surface and inversion of lunar regolith layer thickness. Progress in Natural Science.01:86-94. DOI: 10.1006/icar.2000.6545.
[7] Z.-G. Meng, S.-B. Chen, C. Liu et al.. (2008). Simulation on passive microwave radiative transfer in inhomogeneous lunar regolith. Journal of Jinlin University (Earth Science Edition).06:1070-1074. DOI: 10.1006/icar.2000.6545.
[8] L. Ikelle, S. Yung, F. Daube. (1993). 2-D random media with ellipsoidal autocorrelation functions. Geophysics.58(9):1359-1372. DOI: 10.1006/icar.2000.6545.
[9] B. B. Wilcox, M. S. Robinson, P. C. Thomas, B. R. Hawke. et al.(2005). Constraints on the depth and variability of the lunar regolith. Meteoritics and Planetary Science.40(5):695-710. DOI: 10.1006/icar.2000.6545.
[10] L. Xiao, P. Zhu, G. Fang, Z. Xiao. et al.(2015). A young multilayered terrane of the northern Mare Imbrium revealed by Chang'E-3 mission. Science.347(6227):1226-1229. DOI: 10.1006/icar.2000.6545.
[11] J. Feng, Y. Su, C. Ding et al.. (2017). Dielectric properties estimation of the lunar regolith at CE-3 landing site using lunar penetrating radar data. Icarus.284:424-430. DOI: 10.1006/icar.2000.6545.
[12] J. Zhang, W. Yang, S. Hu, Y. Lin. et al.(2015). Volcanic history of the Imbrium basin: a close-up view from the lunar rover Yutu. Proceedings of the National Academy of Sciences of the United States of America.112(17):5342-5347. DOI: 10.1006/icar.2000.6545.
[13] G. H. Heiken, Vaniman D. T., B. M. French. (1999). Lunar Source-Book: A Users Guide to the Moon. DOI: 10.1006/icar.2000.6545.
[14] Z. Jiang, Z. Zeng, J. Li, F. Liu. et al.(2013). Simulation and analysis of GPR signal based on stochastic media model with an ellipsoidal autocorrelation function. Journal of Applied Geophysics.99:91-97. DOI: 10.1006/icar.2000.6545.
[15] S. Yu. (1996). Wide-band Ricker wavelet. OGP.31(05):605-615. DOI: 10.1006/icar.2000.6545.
[16] O. E. Berg, F. F. Richardson, H. Burton. (1973). Apollo 17 preliminary science report. (16). DOI: 10.1006/icar.2000.6545.
[17] G.-Y. Fang, B. Zhou, Y.-C. Ji, Q.-Y. Zhang. et al.(2014). Lunar penetrating radar onboard the Chang'e-3 mission. Research in Astronomy and Astrophysics.14(12):1607-1622. DOI: 10.1006/icar.2000.6545.
[18] A. Z. Elsherbeni. (2006). The Finite-Difference Time-Domain Method for Electromagnetics with MATLAB Simulations. DOI: 10.1006/icar.2000.6545.
[19] X. Xi, Y. Yao. (2002). Simulations of random medium model and intermixed random medium. Earth Science—Journal of China University of Geosciences.27(1):67-71. DOI: 10.1006/icar.2000.6545.
[20] S. Caorsi, M. Stasolla. (2013). GPR data enhancement via multiple reflections' filtering. International Journal of RF and Microwave Computer-Aided Engineering.23(4):417-422. DOI: 10.1006/icar.2000.6545.
[21] S. Chen, F. Zha, Y. Lian et al.. (2014). Forward modelling of the lunar regolith layer using radar detection based on FDTD. Earth Science Frontiers.21(6):88-91. DOI: 10.1006/icar.2000.6545.
[22] S. C. N. Ergintav. (1997). Modeling of multi-scale media in discrete form. Journal of Seismic Exploration.6(1):77-96. DOI: 10.1006/icar.2000.6545.
[23] J.-P. Berenger. (1994). A perfectly matched layer for the absorption of electromagnetic waves. Journal of Computational Physics.114(2):185-200. DOI: 10.1006/icar.2000.6545.
文献评价指标
浏览 189次
下载全文 29次
评分次数 1次
用户评分 5.0分
分享 2次