首页 » 文章 » 文章详细信息
BioMed Research International Volume 2017 ,2017-05-25
Bioremediation of Mercury by Vibrio fluvialis Screened from Industrial Effluents
Research Article
Kailasam Saranya 1 Arumugam Sundaramanickam 1 Sudhanshu Shekhar 1 Sankaran Swaminathan 2 Thangavel Balasubramanian 1
Show affiliations
DOI:10.1155/2017/6509648
Received 2017-02-11, accepted for publication 2017-04-19, Published 2017-04-19
PDF
摘要

Thirty-one mercury-resistant bacterial strains were isolated from the effluent discharge sites of the SIPCOT industrial area. Among them, only one strain (CASKS5) was selected for further investigation due to its high minimum inhibitory concentration of mercury and low antibiotic susceptibility. In accordance with 16S ribosomal RNA gene sequences, the strain CASKS5 was identified as Vibrio fluvialis. The mercury-removal capacity of V. fluvialis was analyzed at four different concentrations (100, 150, 200, and 250 μg/ml). Efficient bioremediation was observed at a level of 250 μg/ml with the removal of 60% of mercury ions. The interesting outcome of this study was that the strain V. fluvialis had a high bioremediation efficiency but had a low antibiotic resistance. Hence, V. fluvialis could be successfully used as a strain for the ecofriendly removal of mercury.

授权许可

Copyright © 2017 Kailasam Saranya et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Phylogenetic tree constructed from the 16S rRNA gene sequence of Vibrio fluvialis (KM186605) (GenBank accession number KM186605) and closely related organisms using NCBI BLAST. The scale bar represents 0.02 substitutions per nucleotide position.

Antimicrobial susceptibility test profile for mercury-resistant bacteria isolate Vibrio fluvialis (KM186605).

Growth kinetics of Vibrio fluvialis (KM186605) in HgCl2 (100, 150, 200, and 250 μg/ml) containing medium. Control cultures did not contain any metal ions.

Bioremediation efficiency by Vibrio fluvialis (KM186605) with different initial concentration HgCl2 (100, 150, 200, and 250 μg/ml).

通讯作者

Arumugam Sundaramanickam.CAS in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, India, annamalaiuniversity.ac.in.fish_lar@yahoo.com

推荐引用方式

Kailasam Saranya,Arumugam Sundaramanickam,Sudhanshu Shekhar,Sankaran Swaminathan,Thangavel Balasubramanian. Bioremediation of Mercury by Vibrio fluvialis Screened from Industrial Effluents. BioMed Research International ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
6

是否收藏?

参考文献
[1] F. Matyar. (2012). Antibiotic and heavy metal resistance in bacteria isolated from the Eastern Mediterranean Sea coast. Bulletin of Environmental Contamination and Toxicology.89(3):551-556. DOI: 10.1016/j.ibiod.2014.01.024.
[2] H. F. Canstein, Y. Li, A. Felske, I. Wagner-Döbler. et al.(2001). Long-term stability of mercury-reducing microbial biofilm communities analyzed by 16S-23S rDNA interspacer region polymorphism. Microbial Ecology.42(4):624-634. DOI: 10.1016/j.ibiod.2014.01.024.
[3] E. Gullberg, L. M. Albrecht, C. Karlsson, L. Sandegren. et al.(2014). Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. mBio.5(5). DOI: 10.1016/j.ibiod.2014.01.024.
[4] S. A. Jafari, S. Cheraghi. (2014). Mercury removal from aqueous solution by dried biomass of indigenous PG02: kinetic, equilibrium, and thermodynamic studies. International Biodeterioration and Biodegradation.92:12-19. DOI: 10.1016/j.ibiod.2014.01.024.
[5] C. Green-Ruiz. (2006). Mercury(II) removal from aqueous solutions by nonviable sp. from a tropical estuary. Bioresource Technology.97(15):1907-1911. DOI: 10.1016/j.ibiod.2014.01.024.
[6] Clinical and Laboratory Standards Institute. (2013). CLSI M100-S23; Clinical and Laboratory Standards. DOI: 10.1016/j.ibiod.2014.01.024.
[7] Social Scientific Study Group on Minamata Disease. (1999). In the Hope of Avoiding Repetition of Tragedy of Minamata Disease. DOI: 10.1016/j.ibiod.2014.01.024.
[8] A. Iyer, K. Mody, B. Jha. (2005). Biosorption of heavy metals by a marine bacterium. Marine Pollution Bulletin.50(3):340-343. DOI: 10.1016/j.ibiod.2014.01.024.
[9] P. Li, X. B. Feng, G. L. Qiu, L. H. Shang. et al.(2009). Mercury pollution in Asia: a review of the contaminated sites. Journal of Hazardous Materials.168(2-3):591-601. DOI: 10.1016/j.ibiod.2014.01.024.
[10] X. X. Zeng, J. X. Tang, X. D. Liu, P. Jiang. et al.(2009). Isolation, identification and characterization of cadmium-resistant- strain E1. Journal of Central South University of Technology.16(3):416-421. DOI: 10.1016/j.ibiod.2014.01.024.
[11] A. Rehman, A. Ali, B. Muneer, A. R. Shakoori. et al.(2007). Resistance and biosorption of mercury by bacteria isolated from industrial effluents. Pakistan Journal of Zoology.39(3):137-146. DOI: 10.1016/j.ibiod.2014.01.024.
[12] M. Aram, A. Sharifi, F. Kafeelzadeh, M. Naghmachi. et al.(2012). Isolating Mercury-resistant bacteria from Lake Maharloo. International Journal of Biology.4(3):63-71. DOI: 10.1016/j.ibiod.2014.01.024.
[13] A. Hassen, N. Saidi, M. Cherif, A. Boudabous. et al.(1998). Resistance of environmental bacteria to heavy metals. Bioresource Technology.64(1):7-15. DOI: 10.1016/j.ibiod.2014.01.024.
[14] B. Muneer, M. J. Iqbal, F. R. Shakoori, A. R. Shakoori. et al.(2013). Tolerance and biosorption of mercury by microbial consortia: potential use in bioremediation of wastewater. Pakistan Journal of Zoology.45(1):247-254. DOI: 10.1016/j.ibiod.2014.01.024.
[15] Y. Nakahara, Y. Nakahara, Y. Ito, T. Ogawa. et al.(1997). Total synthesis of B-chain of human 2HS glycoprotein. Tetrahedron Letters.38(41):7211-7214. DOI: 10.1016/j.ibiod.2014.01.024.
[16] N. L. Figueiredo, J. Canário, N. J. O'Driscoll, A. Duarte. et al.(2016). Aerobic Mercury-resistant bacteria alter Mercury speciation and retention in the Tagus Estuary (Portugal). Ecotoxicology and Environmental Safety.124:60-67. DOI: 10.1016/j.ibiod.2014.01.024.
[17] I. Wagner-Döbler. (2003). Pilot plant for bioremediation of mercury-containing industrial wastewater. Applied Microbiology and Biotechnology.62(2-3):124-133. DOI: 10.1016/j.ibiod.2014.01.024.
[18] J. Claessens, T. Behrends, P. Van Cappellen. (2004). What do acid-base titrations of live bacteria tell us? A preliminary assessment. Aquatic Sciences.66(1):19-26. DOI: 10.1016/j.ibiod.2014.01.024.
[19] V. V. Umrania. (2006). Bioremediation of toxic heavy metals using acidothermophilic autotrophes. Bioresource Technology.97(10):1237-1242. DOI: 10.1016/j.ibiod.2014.01.024.
[20] S. H. Afrasayab, A. Yasmin, S. H. Hasnain. (2007). Characterization of some indigenous mercury resistant bacteria from polluted environment. Journal of Biological Science.5(7):792-797. DOI: 10.1016/j.ibiod.2014.01.024.
[21] S. H. A. Hassan, R. N. N. Abskharon, S. M. F. Gad El-Rab, A. A. M. Shoreit. et al.(2008). Isolation, characterization of heavy metal resistant strain of isolated from polluted sites in Assiut city, Egypt. Journal of Basic Microbiology.48(3):168-176. DOI: 10.1016/j.ibiod.2014.01.024.
[22] A. Rehman, A. Ali, A. R. Shakoori. (2008). Biosorption of mercury by bacteria, isolated from industrial effluents: potential use in bioremediation of wastewater. Pakistan Journal of Zoology.40(2):115-122. DOI: 10.1016/j.ibiod.2014.01.024.
[23] J. Selvin, S. Shanmugha Priya, G. Seghal Kiran, T. Thangavelu. et al.(2009). Sponge-associated marine bacteria as indicators of heavy metal pollution. Microbiological Research.164(3):352-363. DOI: 10.1016/j.ibiod.2014.01.024.
[24] A. Sinha, K. K. Pant, S. K. Khare. (2012). Studies on mercury bioremediation by alginate immobilized mercury tolerant cells. International Biodeterioration and Biodegradation.71:1-8. DOI: 10.1016/j.ibiod.2014.01.024.
[25] K. A. Noghabi, H. S. Zahiri, A. S. Lotfi, J. Raheb. et al.(2007). Mercury absorption by BM07 grown at two different temperatures. Polish Journal of Microbiology.56(2):111-117. DOI: 10.1016/j.ibiod.2014.01.024.
[26] S. A. Jafari, S. Cheraghi, M. Mirbakhsh, R. Mirza. et al.(2015). Employing response surface methodology for optimization of mercury bioremediation by PG02 in coastal sediments of Bushehr, Iran. Clean—Soil, Air, Water.43(1):118-126. DOI: 10.1016/j.ibiod.2014.01.024.
[27] S. M. Al-Garni, K. M. Ghanem, A. S. Ibrahim. (2010). Biosorption of mercury by capsulated and slime layerforming Gram -ve from an aqueous solution. African Journal of Biotechnology.9(38):6413-6421. DOI: 10.1016/j.ibiod.2014.01.024.
[28] F. M. M. Morel, N. M. Price. (2003). The biogeochemical cycles of trace metals in the oceans. Science.300(5621):944-947. DOI: 10.1016/j.ibiod.2014.01.024.
文献评价指标
浏览 293次
下载全文 41次
评分次数 0次
用户评分 0.0分
分享 6次