首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2017 ,2017-05-11
Applied Gaussian Process in Optimizing Unburned Carbon Content in Fly Ash for Boiler Combustion
Research Article
Chunlin Wang 1 , 2 Yang Liu 2 Richard M. Everson 2 A. A. M. Rahat 2 Song Zheng 1
Show affiliations
DOI:10.1155/2017/6138930
Received 2016-09-24, accepted for publication 2017-04-12, Published 2017-04-12
PDF
摘要

Recently, Gaussian Process (GP) has attracted generous attention from industry. This article focuses on the application of coal fired boiler combustion and uses GP to design a strategy for reducing Unburned Carbon Content in Fly Ash (UCC-FA) which is the most important indicator of boiler combustion efficiency. With getting rid of the complicated physical mechanisms, building a data-driven model as GP is an effective way for the proposed issue. Firstly, GP is used to model the relationship between the UCC-FA and boiler combustion operation parameters. The hyperparameters of GP model are optimized via Genetic Algorithm (GA). Then, served as the objective of another GA framework, the predicted UCC-FA from GP model is utilized in searching the optimal operation plan for the boiler combustion. Based on 670 sets of real data from a high capacity tangentially fired boiler, two GP models with 21 and 13 inputs, respectively, are developed. In the experimental results, the model with 21 inputs provides better prediction performance than that of the other. Choosing the results from 21-input model, the UCC-FA decreases from 2.7% to 1.7% via optimizing some of the operational parameters, which is a reasonable achievement for the boiler combustion.

授权许可

Copyright © 2017 Chunlin Wang et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Yang Liu.Department of Computer Science, University of Exeter, Exeter EX4 4QF, UK, exeter.ac.uk.y.liu@exeter.ac.uk

推荐引用方式

Chunlin Wang,Yang Liu,Richard M. Everson,A. A. M. Rahat,Song Zheng. Applied Gaussian Process in Optimizing Unburned Carbon Content in Fly Ash for Boiler Combustion. Mathematical Problems in Engineering ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
15

是否收藏?

参考文献
[1] C. E. Rasmussen, C. K. I. Williams. (2006). Gaussian Process for Machine Learning. DOI: 10.1109/TIE.2003.812470.
[2] Z. Hao, X. Qian, K. Cen, J. Fan. et al.(2004). Optimizing pulverized coal combustion performance based on ANN and GA. Fuel Processing Technology.85(2-3):113-124. DOI: 10.1109/TIE.2003.812470.
[3] B. Likar, J. Kocijan. (2007). Predictive control of a gas-liquid separation plant based on a Gaussian process model. Computers and Chemical Engineering.31(3):142-152. DOI: 10.1109/TIE.2003.812470.
[4] R. M. Neal. (1996). Bayesian Learning for Neural Networks. DOI: 10.1109/TIE.2003.812470.
[5] X. Zhao, J. Lu, G. Yue, C. Wang. et al.(2005). The investigation of carbon content in fly ash for a bp neural network-based pulverized coal fired boiler. Journal of Engineering for Thermal Energy and Power.2:158-162. DOI: 10.1109/TIE.2003.812470.
[6] A. K. Choudhary, J. A. Harding, M. K. Tiwari. (2009). Data mining in manufacturing: a review based on the kind of knowledge. Journal of Intelligent Manufacturing.20(5):501-521. DOI: 10.1109/TIE.2003.812470.
[7] N. M. Skorupska. (1993). Coal specifications C impact on power station performance, IEACR/52. IEA Coal Research. DOI: 10.1109/TIE.2003.812470.
[8] M. Seeger. (2003). Bayesian gaussian process models: PAC-bayesian generalisation error bounds and sparse approximations. DOI: 10.1109/TIE.2003.812470.
[9] B. Grašic, P. Mlakar, M. Z. Božnar. (2006). Ozone prediction based on neural networks and Gaussian processes. Nuovo Cimento della Societa Italiana di Fisica, Section C.29:651-661. DOI: 10.1109/TIE.2003.812470.
[10] S. R. Dinarloo, J. C. Hower. (2015). Prediction of the unburned carbon content of fly ash in coal-fired power plants. Coal Combustion and Gasification Products.7:19-29. DOI: 10.1109/TIE.2003.812470.
[11] G. Köksal, İ. Batmaz, M. C. Testik. (2011). A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications.38(10):13448-13467. DOI: 10.1109/TIE.2003.812470.
[12] M. R. G. Meireles, P. E. M. Almeida, M. G. Simões. (2003). A comprehensive review for industrial applicability of artificial neural networks. IEEE Transactions on Industrial Electronics.50(3):585-601. DOI: 10.1109/TIE.2003.812470.
[13] G. Zhang, L. Bao. Soft-sensing modeling of the carbon content in fly ash based on information fusion for thermal power plant. :3860-3865. DOI: 10.1109/TIE.2003.812470.
[14] N. S. Dong. (2010). Reducing carbon-in-ash, CCC/167. IEA Clean Coal Centre. DOI: 10.1109/TIE.2003.812470.
[15] Z. Wu. (2003). Understanding fluidised bed combustion, CCC/76. IEA Clean Coal Centre. DOI: 10.1109/TIE.2003.812470.
[16] K. Chalupka, C. K. Williams, I. Murray. (2013). A framework for evaluating approximation methods for gaussian process regression. Journal of Machine Learning Research (JMLR).14(1):333-350. DOI: 10.1109/TIE.2003.812470.
[17] A. M. Carpenter. (1995). Coal blending for Power Stations. DOI: 10.1109/TIE.2003.812470.
[18] E. Sudderth, M. Jordan. (2009). Shared segmentation of natural scenes using dependent pitman-yor processes. Advances in Neural Information Processing Systems.21:1585-1592. DOI: 10.1109/TIE.2003.812470.
[19] H. Bian, Z. Li, Y. Fang. (2013). Study on soft-sensing model of carbon content in fly ash based on support vector regression. Information Technology Journal.12:3122-3127. DOI: 10.1109/TIE.2003.812470.
[20] N. Oka, T. Murayama, H. Matsuoka, S. Yamada. et al.(1987). The influence of rank and maceral composition on ignition and char burnout of pulverized coal. Fuel Processing Technology.15:213-224. DOI: 10.1109/TIE.2003.812470.
[21] V. T. Sathyanathan, K. P. Mohammad. (2004). Prediction of unburnt carbon in tangentially fired boiler using Indian coals. Fuel.83(16):2217-2227. DOI: 10.1109/TIE.2003.812470.
[22] N. D. Lawrence. (2004). Gaussian process latent variable models for visualization of high dimensional data. Advances in Neural Information Processing Systems.16:329-336. DOI: 10.1109/TIE.2003.812470.
[23] S. Su. (1999). . DOI: 10.1109/TIE.2003.812470.
[24] R. P. Adams, G. E. Dahl, I. Murray. Incorporating side information in probabilistic matrix factorization with gaussian processes. :1-9. DOI: 10.1109/TIE.2003.812470.
[25] L. Bartoňová. (2015). Unburned carbon from coal combustion ash: an overview. Fuel Processing Technology.134:136-158. DOI: 10.1109/TIE.2003.812470.
[26] Y.-Q. Zhu, F.-P. Pan, S.-H. Chen, X.-W. Peng. et al.Research on methods of forecasting unburned carbon content in the fly ash from coal-fired power plant. :1-4. DOI: 10.1109/TIE.2003.812470.
[27] P. Kadlec, B. Gabrys, S. Strandt. (2009). Data-driven soft sensors in the process industry. Computers and Chemical Engineering.33(4):795-814. DOI: 10.1109/TIE.2003.812470.
[28] C.-F. Chien, L.-F. Chen. (2008). Data mining to improve personnel selection and enhance human capital: a case study in high-technology industry. Expert Systems with Applications.34(1):280-290. DOI: 10.1109/TIE.2003.812470.
[29] J. Cai, X. Ma, Q. Li. (2009). On-line monitoring the performance of coal-fired power unit: a method based on support vector machine. Applied Thermal Engineering.29(11-12):2308-2319. DOI: 10.1109/TIE.2003.812470.
[30] C.-F. Chien, W.-C. Wang, J.-C. Cheng. (2007). Data mining for yield enhancement in semiconductor manufacturing and an empirical study. Expert Systems with Applications.33(1):192-198. DOI: 10.1109/TIE.2003.812470.
[31] R. Burbidge, M. Trotter, B. Buxton, S. Holden. et al.(2001). Drug design by machine learning: support vector machines for pharmaceutical data analysis. Computers & Chemistry.26(1):5-14. DOI: 10.1109/TIE.2003.812470.
[32] O. Senneca. (2008). Burning and physico-chemical characteristics of carbon in ash from a coal fired power plant. Fuel.87(7):1207-1216. DOI: 10.1109/TIE.2003.812470.
[33] K. Ažman, J. Kocijan. (2007). Application of Gaussian processes for black-box modelling of biosystems. ISA Transactions.46(4):443-457. DOI: 10.1109/TIE.2003.812470.
[34] M. Ahmaruzzaman. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science.36(3):327-363. DOI: 10.1109/TIE.2003.812470.
[35] K. Xie, W. Li, W. Zhao. (2010). Coal chemical industry and its sustainable development in China. Energy.35(11):4349-4355. DOI: 10.1109/TIE.2003.812470.
[36] I. Acar, M. U. Atalay. (2013). Characterization of sintered class F fly ashes. Fuel.106:195-203. DOI: 10.1109/TIE.2003.812470.
文献评价指标
浏览 333次
下载全文 30次
评分次数 0次
用户评分 0.0分
分享 15次