首页 » 文章 » 文章详细信息
Advances in Mathematical Physics Volume 2017 ,2017-04-12
Color Confinement and Spatial Dimensions in the Complex-Sedenion Space
Research Article
Zi-Hua Weng 1
Show affiliations
DOI:10.1155/2017/9876464
Received 2017-02-06, accepted for publication 2017-03-13, Published 2017-03-13
PDF
摘要

The paper aims to apply the complex-sedenions to explore the wave functions and field equations of non-Abelian gauge fields, considering the spatial dimensions of a unit vector as the color degrees of freedom in the complex-quaternion wave functions, exploring the physical properties of the color confinement essentially. J. C. Maxwell was the first to employ the quaternions to study the electromagnetic fields. His method inspires subsequent scholars to introduce the quaternions, octonions, and sedenions to research the electromagnetic field, gravitational field, and nuclear field. The application of complex-sedenions is capable of depicting not only the field equations of classical mechanics, but also the field equations of quantum mechanics. The latter can be degenerated into the Dirac equation and Yang-Mills equation. In contrast to the complex-number wave function, the complex-quaternion wave function possesses three new degrees of freedom, that is, three color degrees of freedom. One complex-quaternion wave function is equivalent to three complex-number wave functions. It means that the three spatial dimensions of unit vector in the complex-quaternion wave function can be considered as the “three colors”; naturally the color confinement will be effective. In other words, in the complex-quaternion space, the “three colors” are only the spatial dimensions, rather than any property of physical substance.

授权许可

Copyright © 2017 Zi-Hua Weng. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Zi-Hua Weng.School of Physics and Mechanical & Electrical Engineering, Xiamen University, Xiamen 361005, China, xmu.edu.cn.xmuwzh@xmu.edu.cn

推荐引用方式

Zi-Hua Weng. Color Confinement and Spatial Dimensions in the Complex-Sedenion Space. Advances in Mathematical Physics ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
18

是否收藏?

参考文献
[1] A. R. Dündarer. (1991). Multi-instanton solutions in eight-dimensional curved space. Modern Physics Letters A.6(5):409-415. DOI: 10.1139/p02-023.
[2] J. Koplinger. (2007). Gravity and electromagnetism on conic sedenions. Applied Mathematics and Computation.188(1):948-953. DOI: 10.1139/p02-023.
[3] J. Koplinger. (2007). Hypernumbers and relativity. Applied Mathematics and Computation.188(1):954-969. DOI: 10.1139/p02-023.
[4] Z.-H. Weng. (2016). Forces in the complex octonion curved space. International Journal of Geometric Methods in Modern Physics.13(6). DOI: 10.1139/p02-023.
[5] S. Demir, M. Tanisli. (2011). A compact biquaternionic formulation of massive field equations in gravi-electromagnetism. The European Physical Journal Plus.126(11, article 115):1-12. DOI: 10.1139/p02-023.
[6] J. Koplinger. (2007). Signature of gravity in conic sedenions. Applied Mathematics and Computation.188(1):942-947. DOI: 10.1139/p02-023.
[7] V. L. Mironov, S. V. Mironov. (2009). Octonic second-order equations of relativistic quantum mechanics. Journal of Mathematical Physics.50(1)-13. DOI: 10.1139/p02-023.
[8] V. L. Mironov, S. V. Mironov. (2009). Octonic representation of electromagnetic field equations. Journal of Mathematical Physics.50(1)-10. DOI: 10.1139/p02-023.
[9] T. Suzuki, M. Hasegawa, K. Ishiguro, Y. Koma. et al.(2009). Gauge invariance of color confinement due to the dual meissner effect caused by abelian monopoles. Physical Review D—Particles, Fields, Gravitation and Cosmology.80(5). DOI: 10.1139/p02-023.
[10] A. Yamamoto, H. Suganuma. (2009). Relevant energy scale of color confinement from lattice QCD. Physical Review D.79(5). DOI: 10.1139/p02-023.
[11] A. Singh. (1981). Quaternionic form of the electromagnetic-current equations with magnetic monopoles. Lettere al Nuovo Cimento.31(5):145-148. DOI: 10.1139/p02-023.
[12] W. M. Honig. (1977). Quaternionic electromagnetic wave equation and a dual charge-filled space. Lettere Al Nuovo Cimento Series 2.19(4):137-140. DOI: 10.1139/p02-023.
[13] B. C. Chanyal. (2016). Dual octonion electrodynamics with the massive field of dyons. Journal of Mathematical Physics.57(3). DOI: 10.1139/p02-023.
[14] B. C. Chanyal. (2014). Sedenion unified theory of gravi-electromagnetism. Indian Journal of Physics.88(11):1197-1205. DOI: 10.1139/p02-023.
[15] V. Majernik. (2004). The energy density of the quaternionic field as dark energy in the universe. General Relativity and Gravitation.36(9):2139-2149. DOI: 10.1139/p02-023.
[16] S. M. Grudsky, K. V. Khmelnytskaya, V. V. Kravchenko. (2004). On a quaternionic Maxwell equation for the time-dependent electromagnetic field in a chiral medium. Journal of Physics A: Mathematical and General.37(16):4641-4647. DOI: 10.1139/p02-023.
[17] Y. Meiling, X. Mingmei, L. Zhengyou, L. Lianshou. et al.(2009). Liquid property of sQGP obtained from a bond percolation model with color confinement. Journal of Physics G: Nuclear and Particle Physics.36(12). DOI: 10.1139/p02-023.
[18] S. Demir, M. Tanişli. (2012). Sedenionic formulation for generalized fields of dyons. International Journal of Theoretical Physics.51(4):1239-1252. DOI: 10.1139/p02-023.
[19] J. G. Winans. (1977). Quaternion physical quantities. Foundations of Physics.7(5-6):341-349. DOI: 10.1139/p02-023.
[20] H. T. Anastassiu, P. E. Atlamazoglou, D. I. Kaklamani. (2003). Application of bicomplex (quaternion) algebra to fundamental electromagnetics: a lower order alternative to the Helmholtz equation. IEEE Transactions on Antennas and Propagation.51(8):2130-2136. DOI: 10.1139/p02-023.
[21] F. A. Doria. (1975). A Weyl-like equation for the gravitational field. Lettere al Nuovo Cimento.14(13):480-482. DOI: 10.1139/p02-023.
[22] P. Kalauni, J. C. A. Barata. (2015). Reconstruction of symmetric Dirac-Maxwell equations using nonassociative algebra. International Journal of Geometric Methods in Modern Physics.12(3). DOI: 10.1139/p02-023.
[23] M. Gogberashvili. (2006). Octonionic electrodynamics. Journal of Physics. A.39(22):7099-7104. DOI: 10.1139/p02-023.
[24] B. C. Chanyal, P. S. Bisht, O. P. S. Negi. (2013). Octonionic non-abelian gauge theory. International Journal of Theoretical Physics.52(10):3522-3533. DOI: 10.1139/p02-023.
[25] V. L. Mironov, S. V. Mironov. (2009). Octonic first-order equations of relativistic quantum mechanics. International Journal of Modern Physics A.24(22):4157-4167. DOI: 10.1139/p02-023.
[26] B. C. Chanyal, P. S. Bisht, O. P. Negi. (2011). Generalized split-octonion electrodynamics. International Journal of Theoretical Physics.50(6):1919-1926. DOI: 10.1139/p02-023.
[27] B. C. Chanyal, V. K. Sharma, O. P. Negi. (2015). Octonionic gravi-electromagnetism and dark matter. International Journal of Theoretical Physics.54(10):3516-3532. DOI: 10.1139/p02-023.
[28] J. Koplinger. (2006). Dirac equation on hyperbolic octonions. Applied Mathematics and Computation.182(1):443-446. DOI: 10.1139/p02-023.
[29] M. Eto, L. Ferretti, K. Konishi, G. Marmorini. et al.(2007). Non-abelian duality from vortex moduli: a dual model of color-confinement. Nuclear Physics. B.780(3):161-187. DOI: 10.1139/p02-023.
[30] J. Edmonds. (1974). Quaternion wave equations in curved space-time. International Journal of Theoretical Physics.10(2):115-122. DOI: 10.1139/p02-023.
[31] T. Suzuki, K. Ishiguro, Y. Koma, T. Sekido. et al.(2008). Gauge-independent Abelian mechanism of color confinement in gluodynamics. Physical Review D.77(3). DOI: 10.1139/p02-023.
[32] Z.-H. Weng. (2015). Some properties of dark matter field in the complex octonion space. International Journal of Modern Physics A.30(35). DOI: 10.1139/p02-023.
[33] D. E. Kharzeev, E. M. Levin. (2015). Color confinement and screening in the vacuum of QCD. Physical Review Letters.114(24). DOI: 10.1139/p02-023.
[34] F. Wang, J. L. Ping, H. R. Pang, L. Z. Chen. et al.(2007). Color confinement multi quark resonance. Nuclear Physics A.790(1–4):493-497. DOI: 10.1139/p02-023.
[35] V. Majernik. (1999). Quaternionic formulation of the classical fields. Advances in Applied Clifford Algebras.9(1):119-130. DOI: 10.1139/p02-023.
[36] S. P. Brumby, G. C. Joshi. (1996). Global effects in quaternionic quantum field theory. Foundations of Physics.26(12):1591-1599. DOI: 10.1139/p02-023.
[37] S. Furui. (2014). Axial anomaly and the triality symmetry of leptons and hadrons. Few-Body Systems.55(11):1083-1097. DOI: 10.1139/p02-023.
[38] S. P. Brumby, B. E. Hanlon, G. C. Joshi. (1997). Implications of quaternionic dark matter. Physics Letters B.401(3-4):247-253. DOI: 10.1139/p02-023.
[39] S. Furui. (2013). Axial anomaly and the triality symmetry of octonion. Few-Body Systems.54(11):2097-2111. DOI: 10.1139/p02-023.
[40] S. Furui. (2012). The flavor symmetry in the standard model and the triality symmetry. International Journal of Modern Physics A.27(27). DOI: 10.1139/p02-023.
[41] S. J. Brodsky. (2016). Light-front holography, color confinement, and supersymmetric features of QCD. Few-Body Systems.57(8):703-715. DOI: 10.1139/p02-023.
[42] H. C. Chandola, H. C. Pandey, H. Nandan. (2002). Topology of QCD vacuum and color confinement. Canadian Journal of Physics.80(7):745-754. DOI: 10.1139/p02-023.
[43] S. De Leo, K. Abdel-Khalek. (1996). Octonionic Dirac equation. Progress of Theoretical Physics.96(4):833-845. DOI: 10.1139/p02-023.
[44] S. J. Gates, K. Stiffler. (2014). Adinkra “color” confinement in exemplary off-shell constructions of 4D, N = 2 supersymmetry representations. Journal of High Energy Physics.2014(7, article 51). DOI: 10.1139/p02-023.
[45] A. Nakamura, T. Saito. (2006). Color confinement in Coulomb gauge QCD. Progress of Theoretical Physics.115(1):189-200. DOI: 10.1139/p02-023.
[46] S. Marques-Bonham. (1991). The Dirac equation in a non-Riemannian manifold. III. An analysis using the algebra of quaternions and octonions. Journal of Mathematical Physics.32(5):1383-1394. DOI: 10.1139/p02-023.
[47] M. Chaichian, K. Nishijima. (2006). Does color confinement imply massive gluons?. European Physical Journal C.47(3):737-743. DOI: 10.1139/p02-023.
[48] S. J. Brodsky, G. F. de Teramond, H. G. Dosch. (2014). Light-front holographic QCD and color confinement. International Journal of Modern Physics A.29(21). DOI: 10.1139/p02-023.
[49] R. Penney. (1968). Octonions and the Dirac equation. American Journal of Physics.36(10):871-873. DOI: 10.1139/p02-023.
[50] V. L. Mironov, S. V. Mironov. (2016). Gauge invariance of sedeonic equations for massive and massless fields. International Journal of Theoretical Physics.55(7):3105-3119. DOI: 10.1139/p02-023.
[51] S. V. Mironov, V. L. Mironov. (2015). Sedeonic equations of massive fields. International Journal of Theoretical Physics.54(1):153-168. DOI: 10.1139/p02-023.
[52] Z.-H. Weng. (2015). Dynamic of astrophysical jets in the complex octonion space. International Journal of Modern Physics. D.24(10). DOI: 10.1139/p02-023.
[53] C. Castro. (2012). On octonionic gravity, exceptional Jordan strings and nonassociative ternary Gauge field theories. International Journal of Geometric Methods in Modern Physics.9(3)-23. DOI: 10.1139/p02-023.
[54] S. Demir, M. Tanisli, T. Tolan. (2013). Octonic gravitational field equations. International Journal of Modern Physics A.28(21). DOI: 10.1139/p02-023.
[55] V. L. Mironov, S. V. Mironov. (2009). Sedeonic generalization of relativistic quantum mechanics. International Journal of Modern Physics A.24(32):6237-6254. DOI: 10.1139/p02-023.
[56] S. Demir. (2013). Hyperbolic octonion formulation of gravitational field equations. International Journal of Theoretical Physics.52(1):105-116. DOI: 10.1139/p02-023.
[57] H. C. Pandey, H. C. Chandola, H. Dehnen. (2004). Color confinement and finite temperature QCD phase transition. International Journal of Modern Physics A.19(2):271-285. DOI: 10.1139/p02-023.
[58] K. Morita. (2007). Quaternions, Lorentz group and the Dirac theory. Progress of Theoretical Physics.117(3):501-532. DOI: 10.1139/p02-023.
[59] R. Kitano. (2011). Hidden local symmetry and color confinement. Journal of High Energy Physics.2011(11, article 124). DOI: 10.1139/p02-023.
[60] A. J. Davies. (1990). Quaternionic Dirac equation. Physical Review D.41(8):2628-2630. DOI: 10.1139/p02-023.
[61] J. Braun, H. Gies, J. M. Pawlowski. (2010). Quark confinement from colour confinement. Physics Letters B.684(4-5):262-267. DOI: 10.1139/p02-023.
[62] S. M. Troshin, N. E. Tyurin. (2010). Unitarity and the color confinement. Modern Physics Letters A.25(40):3363-3370. DOI: 10.1139/p02-023.
[63] A. S. Rawat, O. P. Negi. (2012). Quaternion gravi-electromagnetism. International Journal of Theoretical Physics.51(3):738-745. DOI: 10.1139/p02-023.
文献评价指标
浏览 442次
下载全文 127次
评分次数 0次
用户评分 0.0分
分享 18次