首页 » 文章 » 文章详细信息
Advances in Astronomy Volume 2017 ,2017-04-11
The Observer’s Guide to the Gamma-Ray Burst Supernova Connection
Review Article
Zach Cano 1 , 2 Shan-Qin Wang 3 , 4 Zi-Gao Dai 3 , 4 Xue-Feng Wu 5 , 6
Show affiliations
DOI:10.1155/2017/8929054
Received 2016-04-07, accepted for publication 2016-11-29, Published 2016-11-29
PDF
摘要

We present a detailed report of the connection between long-duration gamma-ray bursts (GRBs) and their accompanying supernovae (SNe). The discussion presented here places emphasis on how observations, and the modelling of observations, have constrained what we know about GRB-SNe. We discuss their photometric and spectroscopic properties, their role as cosmological probes, including their measured luminosity–decline relationships, and how they can be used to measure the Hubble constant. We present a statistical summary of their bolometric properties and use this to determine the properties of the “average” GRB-SN. We discuss their geometry and consider the various physical processes that are thought to power the luminosity of GRB-SNe and whether differences exist between GRB-SNe and the SNe associated with ultra-long-duration GRBs. We discuss how observations of their environments further constrain the physical properties of their progenitor stars and give a brief overview of the current theoretical paradigms of their central engines. We then present an overview of the radioactively powered transients that have been photometrically associated with short-duration GRBs, and we conclude by discussing what additional research is needed to further our understanding of GRB-SNe, in particular the role of binary-formation channels and the connection of GRB-SNe with superluminous SNe.

授权许可

Copyright © 2017 Zach Cano et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

GRB 980425/SN 1998bw: the archetype GRB-SN. Host image (ESO 184-G82) is from [1], where the position of the optical transient is clearly visible. Optical light curves are from [9] and spectra from [2].

(a) The photometric (R-band) evolution of GRB 030329/SN 2003dh, from [6]; (b) the spectral evolution of GRB 030329/SN 2003dh, as compared with that of SN 1998bw, from [4].

(a) The photometric (R-band) evolution of GRB 030329/SN 2003dh, from [6]; (b) the spectral evolution of GRB 030329/SN 2003dh, as compared with that of SN 1998bw, from [4].

A mosaic of GRB-SNe (AG + SN). Clear SN bumps are observed for all events except SN 2003dh, for which the SN’s properties had to be carefully decomposed from photometric and spectroscopic observations [7]. The lack of an unambiguous SN bump in this case is not surprising given the brightness of its AG relative to the other GRB-SN in the plot: SN 2013dx was at a comparable redshift (z=0.145, compared with z=0.1685 for 2003dh), but its AG was much fainter (2–5 mag) at a given moment in time. The redshift range probed in this mosaic spans almost an order of magnitude (0.145

An example decomposition of the optical (R-band) light curve of GRB 090618 [10]. (a) For a given GRB-SN event, the single-filter monochromatic flux is attributed as arising from three sources: the AG, the SN, and a constant source of flux from the host galaxy. (b) Once the observations have been dereddened, the host flux is removed, either via the image-subtraction technique or by being mathematically subtracted away. At this point a mathematical model composed of one or more power laws punctuated by break-times is fit to the early light curve to determine the temporal behaviour of the AG. (c) Once the AG model has been determined, it is subtracted from the observations leaving just light from the SN.

An example decomposition of the optical (R-band) light curve of GRB 090618 [10]. (a) For a given GRB-SN event, the single-filter monochromatic flux is attributed as arising from three sources: the AG, the SN, and a constant source of flux from the host galaxy. (b) Once the observations have been dereddened, the host flux is removed, either via the image-subtraction technique or by being mathematically subtracted away. At this point a mathematical model composed of one or more power laws punctuated by break-times is fit to the early light curve to determine the temporal behaviour of the AG. (c) Once the AG model has been determined, it is subtracted from the observations leaving just light from the SN.

An example decomposition of the optical (R-band) light curve of GRB 090618 [10]. (a) For a given GRB-SN event, the single-filter monochromatic flux is attributed as arising from three sources: the AG, the SN, and a constant source of flux from the host galaxy. (b) Once the observations have been dereddened, the host flux is removed, either via the image-subtraction technique or by being mathematically subtracted away. At this point a mathematical model composed of one or more power laws punctuated by break-times is fit to the early light curve to determine the temporal behaviour of the AG. (c) Once the AG model has been determined, it is subtracted from the observations leaving just light from the SN.

Peak/near-peak spectra of GRB-SNe. The spectra have been arbitrarily shifted in flux for comparison purposes and to exaggerate their main features, and host emission lines have been manually removed. The spectra of SNe 2012bz, 2013cq, and 2013dx have been Kaiser smoothed [31] in order to suppress noise. Most of the spectra are characterized by broad absorption features, while such features are conspicuously absent in the spectra of SN 2013ez and SN 2011kl.

Measured line velocities of a sample of GRB-SNe. See Table 4 for their respective references.

Measured line velocities of a sample of GRB-SNe. See Table 4 for their respective references.

The positions of GRBs, SNe Ibc, and GRB-SNe in the EK-Γβ plane [32, 78–81]. Ordinary SNe Ibc are shown in green, llGRBs in blue, relativistic SNe IcBL in purple, and jetted-GRBs in red. Squares are used for the slow-moving SN ejecta, while circles represent the kinetic energy and velocity of the nonthermal radio-emitting ejecta associated with these events (e.g., the GRB jet). The velocities were computed for t-t0=1 day (rest-frame), where the value Γβ=1 denotes the division between relativistic and nonrelativistic ejecta. The solid lines correspond to (green) ejecta kinetic energy profiles of a purely hydrodynamical explosion EK∝(Γβ)-5.2   [57, 82, 83]; (blue/purple dashed) explosions powered by a short-lived central engine (SBO-GRBs and relativistic IcBL SNe 2009bb and 2012ap: EK∝(Γβ)-2.4); (red) those arising from a long-lived central engine (i.e., jetted-GRBs; EK∝(Γβ)-0.4 [84]). Modified, with permission, from Margutti et al. [78, 81].

Properties of the prompt emission for different classes of GRBs in the Eγ,iso-Ep plane [85]. Data from [85–87] are shown in grey along with their best fit to a single power law (index of α=0.57) and the 2σ uncertainty in their fit. Notable events that do not appear to follow the Amati relation include llGRBs (980425 and 031203), INT-GRBs (150818A), and high-luminosity GRB 140606B. Both ULGRBs are consistent with the Amati relation, so are GRBs 030329 and 130427A, while GRB 120422A and llGRB 100316D are marginally consistent.

Bolometric LCs of a sample of GRB-SNe. Times are given in the rest-frame. The average peak luminosity of all GRB-SNe except SN 2011kl is L-p=1.0×1043 erg s-1, with a standard deviation of 0.36×1043 erg s-1. The peak luminosity of SN 2011kl is Lp=2.9×1043 erg s-1, which makes it more than 5σ more luminous than the average GRB-SN. The average peak time of the entire sample is tp=13.2 d, with a standard deviation of 2.6 d. If SN 2011kl is excluded from the sample, this changes to 13.0 d. Plotted for reference is an analytical model that considers the luminosity produced by the average GRB-SN (EK=25×1051 erg, Mej=6 M⊙, and MNi=0.4 M⊙).

Late-time bolometric LC of SN 1998bw in filters BVRI. Two analytical models have been plotted to match the peak luminosity: (1) a single-zone analytical model for a fiducial SN that is powered by radioactive heating, where EK=27.6×1051 erg, an ejecta mass of Mej=6.4 M⊙, and a nickel mass of MNi=0.39 M⊙, and (2) a t-2 curve, which is the expected decay rate for luminosity powered by a magnetar central engine. At late times the decay rate of model (1) provides a much better fit than the t-2 decay, which grossly overpredicts the bolometric luminosity at times later than 400 d. This is one line of observational evidence that GRB-SNe are powered by radioactive heating and not via dipole-extracted radiation from a magnetar central engine (i.e., a magnetar-driven SN).

Observed [O i] λλ6300,6364 emission-line profiles for a sample of SNe Ibc. Top right: emission lines classified into characteristic profiles (from [222]): single-peaked (S), transition (T), and double-peaked (D). Model predictions from a bipolar model (red curves) and a less aspherical model (blue), for different viewing directions are shown (directions denoted by the red and blue text). All other panels: nebular line profiles observed for an aspherical explosion model for different viewing angles (from [113]). The figure shows the properties of the explosion model: Fe (coloured in green and blue) is ejected near the jet direction and oxygen (red) in a torus-like structure near the equatorial plane. Synthetic [O i] λλ6300,6364 emission-line profiles are compared with the spectra of SN 1998bw (top left) and SN 2003jd (bottom right).

Schematic illustration of polarization in the SN ejecta. (a) When the photosphere is spherical, polarization is canceled out, and no polarization is expected. At the wavelength of a line, polarization produced by the electron scattering is depolarized by the line transition. (b) When the ion distribution is spherical, the remaining polarization is canceled, and no polarization is expected. (c) When the ion distribution is not spherical, the cancelation becomes incomplete, and line polarization could be detected (figure and caption taken from [241]).

Luminosity (k)-stretch (s) relation for relativistic type IcBL SNe [42]. For all filters from UBVRI, and combinations thereof, GRB-SNe are shown in blue, and the two known relativistic type IcBL SNe (2009bb and 2012ap) are shown in red. A bootstrap analysis was performed to fit a straight line to the dataset to find the slope (m) and y-intercept (b), which used Monte-Carlo sampling and N=10,000 simulations. The best-fitting values are m=2.72±0.26 and b=-1.29±0.20. The correlation coefficient is r=0.876, and the two-point probability of a chance correlation is p=1.1×10-9. This shows that the k-s relationship is statistically significant at the 0.001 significance level.

Luminosity−decline relationships of relativistic SNe IcBL (GRB-SNe: filled circles; SNe IcBL: filled triangles) in filters B (purple), V (green), and R (red), from [44]. Solid black lines and points correspond to absolute magnitudes calculated for luminosity distances, while coloured points and lines correspond to absolute magnitudes calculated for those events where independent distance measurements have been made to the SN’s host galaxy. The correlation coefficient for each dataset is shown (in black and in their respective colours) as well as the best-fitting luminosity−decline relationship determined using a bootstrap method and the corresponding rms (σ) of the fitted model. It is seen that statistically significant correlations are present for both the GRB-SNe and combined GRB-SN and SN IcBL samples.

Hubble diagrams of relativistic SNe IcBL in filters BVR, from [44]. GRB-SNe are shown in blue and SNe IcBL (SNe 2009bb and 2012ap) in red. Plotted in each subplot are the uncorrected magnitudes of each subtype and the fitted Hubble ridge line as determined using a bootstrap method. Also plotted are the rms values (σ) and residuals of the magnitudes about the ridge line. In the B-band, the amount of scatter in the combined SNe IcBL sample is the same as that for SNe Ia up to z=0.2 [44, 278], which is σ≈0.3 mag.

The effect of different degrees of nickel mixing in the ejecta of SNe Ibc on their observed LCs, from [290]. Top and middle panels: how the relative positions of the shock-heating contribution (blue curves),   56Ni diffusive tail contribution (purple curves), and the Ni56 contribution (red curves) to the observed LC can differ depending on the depth and amount of mixing of the Ni56. The total observed LC is the sum of these three components. When the Ni56 is located deep in the ejecta (middle panel) and the shock-heating light curve (blue curve) is below the detection limits, there can be a significant dark phase between the time of explosion and the moment of first detection. Bottom: temporal evolution of the photospheric radius (orange curve) and velocity (green curve). Depending on the position of the Ni56 LC, different photospheric radii, velocities, and velocity gradients will be present during the rising LC.

Observations of KNe associated with SGRBs: (a) GRB 130603B, from [395]. The decomposed optical and NIR LCs show an excess of flux in the NIR (F160W) filter, which is consistent with theoretical predictions of light coming from a KN. (b) GRB 060614, from [396]. Multiband LCs show an excess in the optical LCs (R and I), which once the AG light is removed, the resultant KN LCs match those from hydrodynamic simulations of a BH-NS merger (ejecta velocity of ~0.2c and an ejecta mass of 0.1 M⊙ [397]). (c) SEDs of the multiband observations of GRB 060614, also from [396]. The early SEDs are well described by a power law spectrum, which implies synchrotron radiation. However, at later epochs the SEDs are better described by thermal, black body spectra, with peak temperatures of ~2700 K, which are in good agreement with theoretical expectations [398].

Observations of KNe associated with SGRBs: (a) GRB 130603B, from [395]. The decomposed optical and NIR LCs show an excess of flux in the NIR (F160W) filter, which is consistent with theoretical predictions of light coming from a KN. (b) GRB 060614, from [396]. Multiband LCs show an excess in the optical LCs (R and I), which once the AG light is removed, the resultant KN LCs match those from hydrodynamic simulations of a BH-NS merger (ejecta velocity of ~0.2c and an ejecta mass of 0.1 M⊙ [397]). (c) SEDs of the multiband observations of GRB 060614, also from [396]. The early SEDs are well described by a power law spectrum, which implies synchrotron radiation. However, at later epochs the SEDs are better described by thermal, black body spectra, with peak temperatures of ~2700 K, which are in good agreement with theoretical expectations [398].

Observations of KNe associated with SGRBs: (a) GRB 130603B, from [395]. The decomposed optical and NIR LCs show an excess of flux in the NIR (F160W) filter, which is consistent with theoretical predictions of light coming from a KN. (b) GRB 060614, from [396]. Multiband LCs show an excess in the optical LCs (R and I), which once the AG light is removed, the resultant KN LCs match those from hydrodynamic simulations of a BH-NS merger (ejecta velocity of ~0.2c and an ejecta mass of 0.1 M⊙ [397]). (c) SEDs of the multiband observations of GRB 060614, also from [396]. The early SEDs are well described by a power law spectrum, which implies synchrotron radiation. However, at later epochs the SEDs are better described by thermal, black body spectra, with peak temperatures of ~2700 K, which are in good agreement with theoretical expectations [398].

The death of a massive star produces a GRB (and its multiband AG) and an energetic and bright SN (from [439]).

通讯作者

Zach Cano.Centre for Astrophysics and Cosmology, Science Institute, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland, hi.is;Instituto de Astrofísica de Andalucía (IAA-CSIC), Glorieta de la Astronomía s/n, 18008 Granada, Spain, iaa.es.zewcano@gmail.com

推荐引用方式

Zach Cano,Shan-Qin Wang,Zi-Gao Dai,Xue-Feng Wu. The Observer’s Guide to the Gamma-Ray Burst Supernova Connection. Advances in Astronomy ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
17

是否收藏?

参考文献
[1] D. Kocevski, A. A. West. (2011). On the origin of the mass-metallicity relation for gamma-ray burst host galaxies. The Astrophysical Journal Letters.735(1, article L8). DOI: 10.1038/27150.
[2] B. A. Zauderer, E. Berger, R. Margutti. (2013). Illuminating the darkest gamma-ray bursts with radio observations. The Astrophysical Journal.767(2, article 161). DOI: 10.1038/27150.
[3] P. Massey. (2003). Massive stars in the local group: implications for stellar evolution and star formation. Annual Review of Astronomy and Astrophysics.41:15-56. DOI: 10.1038/27150.
[4] N. R. Walborn, N. I. Morrell, I. D. Howarth, P. A. Crowther. et al.(2004). A CNO dichotomy among O2 giant spectra in the magellanic clouds. Astrophysical Journal.608(2 I):1028-1038. DOI: 10.1038/27150.
[5] D. A. Perley, A. J. Levan, N. R. Tanvir, S. B. Cenko. et al.(2013). A population of massive, luminous galaxies hosting heavily dust-obscured gamma-ray bursts: implications for the use of GRBs as tracers of cosmic star formation. Astrophysical Journal.778(2, article no. 128). DOI: 10.1038/27150.
[6] F. Tramper, S. M. Straal, D. Sanyal, H. Sana. et al.(2015). Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars. Astronomy and Astrophysics.581, article A110. DOI: 10.1038/27150.
[7] F. Mannucci, R. Salvaterra, M. A. Campisi. (2011). The metallicity of the long GRB hosts and the fundamental metallicity relation of low-mass galaxies. Monthly Notices of the Royal Astronomical Society.414(2):1263-1268. DOI: 10.1038/27150.
[8] A. Rossi, S. Klose, P. Ferrero, J. Greiner. et al.(2012). A deep search for the host galaxies of gamma-ray bursts with no detected optical afterglow. Astronomy and Astrophysics.545, article no. A77. DOI: 10.1038/27150.
[9] J. A. Toalá, M. A. Guerrero, G. Ramos-Larios, V. Guzmán. et al.(2015). WISE morphological study of Wolf-Rayet nebulae. The Astronomy and Astrophysics.578, article A66. DOI: 10.1038/27150.
[10] R. R. Treffers, Y.-H. Chu. (1982). Galactic ring nebulae associated with Wolf-Rayet stars. V—the stellar wind-blown bubbles. The Astrophysical Journal.254:569-577. DOI: 10.1038/27150.
[11] A. Rowlinson, K. Wiersema, A. J. Levan, N. R. Tanvir. et al.(2010). Discovery of the afterglow and host galaxy of the low-redshift short GRB 080905A. Monthly Notices of the Royal Astronomical Society.408(1):383-391. DOI: 10.1038/27150.
[12] J.-C. Bouret, T. Lanz, D. J. Hillier, S. R. Heap. et al.(2003). Quantitative spectroscopy of O stars at low metallicity: O dwarfs in NGC 346. The Astrophysical Journal.595(2):1182-1205. DOI: 10.1038/27150.
[13] H. Gao, X. Ding, X.-F. Wu, Z.-G. Dai. et al.(2015). GRB 080503 late afterglow re-brightening: signature of a magnetar-powered merger-nova. Astrophysical Journal.807(2). DOI: 10.1038/27150.
[14] P. Schady, T. Krühler, J. Greiner, J. F. Graham. et al.(2015). Super-solar metallicity at the position of the ultra-long GRB 130925A. Astronomy and Astrophysics.579, article no. A126. DOI: 10.1038/27150.
[15] E. Berger, W. Fong, R. Chornock. (2013). An r-process kilonova associated with the short-hard GRB 130603B. Astrophysical Journal Letters.774(2, article no. L23). DOI: 10.1038/27150.
[16] T. Krühler, J. Greiner, P. Schady, S. Savaglio. et al.(2011). The SEDs and host galaxies of the dustiest GRB afterglows. Astronomy and Astrophysics.534, article no. A108. DOI: 10.1038/27150.
[17] H. F. Song, G. Meynet, A. Maeder, S. Ekström. et al.(2016). Massive star evolution in close binaries: conditions for homogeneous chemical evolution. Astronomy and Astrophysics.585, article no. A120. DOI: 10.1038/27150.
[18] J. Hjorth, D. Malesani, P. Jakobsson, A. O. Jaunsen. et al.(2012). The optically unbiased gamma-ray burst host (tough) survey. I. Survey design and catalogs. Astrophysical Journal.756(2, article no. 187). DOI: 10.1038/27150.
[19] I. Hunter, I. Brott, D. J. Lennon, N. Langer. et al.(2008). The VLT flames survey of massive stars: rotation and nitrogen enrichment as the key to understanding massive star evolution. The Astrophysical Journal.676(1):L29. DOI: 10.1038/27150.
[20] M. Tanaka, K. Hotokezaka, K. Kyutoku, S. Wanajo. et al.(2014). Radioactively powered emission from black hole-neutron star mergers. Astrophysical Journal.780(1, article no. 31). DOI: 10.1038/27150.
[21] V. D'Elia, F. Fiore, E. J. A. Meurs, G. Chincarini. et al.(2007). UVES/VLT high resolution spectroscopy of GRB 050730 afterglow: probing the features of the GRB environment. Astronomy and Astrophysics.467(2):629-639. DOI: 10.1038/27150.
[22] R. A. Chevalier, Z.-Y. Li. (2000). Wind interaction models for gamma-ray burst afterglows: the case for two types of progenitors. The Astrophysical Journal.536(1):195-212. DOI: 10.1038/27150.
[23] J. P. U. Fynbo, T. Krühler, K. Leighly. (2014). The mysterious optical afterglow spectrum of GRB140506A at. Astronomy & Astrophysics.572, article A12. DOI: 10.1038/27150.
[24] B. Yang, Z.-P. Jin, X. Li, S. Covino. et al.(2015). A possible macronova in the late afterglow of the long-short burst GRB 060614. Nature Communications.6, article no. 7323. DOI: 10.1038/27150.
[25] D. Kocevski, C. C. Thöne, E. Ramirez-Ruiz, J. S. Bloom. et al.(2010). Limits on radioactive powered emission associated with a short-hard GRB 070724A in a star-forming galaxy. Monthly Notices of the Royal Astronomical Society.404(2):963-974. DOI: 10.1038/27150.
[26] N. Mirabal, J. P. Halpern, R. Chornock, A. V. Filippenko. et al.(2003). GRB 021004: a possible shell nebula around a Wolf-Rayet star gamma-ray burst progenitor. Astrophysical Journal.595(2):935-949. DOI: 10.1038/27150.
[27] E. Berger, S. B. Cenko, D. B. Fox, A. Cucchiara. et al.(2009). Discovery of the very red near-infrared and optical afterglow of the short-duration GRB 070724A. Astrophysical Journal.704(1):877-882. DOI: 10.1038/27150.
[28] D. A. Perley, B. D. Metzger, J. Granot, N. R. Butler. et al.(2009). GRB 080503: implications of a naked short gamma-ray burst dominated by extended emission. Astrophysical Journal.696(2):1871-1885. DOI: 10.1038/27150.
[29] Z.-P. Jin, X. Li, Z. Cano, S. Covino. et al.(2015). The light curve of the macronova associated with the long-short burst GRB 060614. Astrophysical Journal Letters.811(2, article L22). DOI: 10.1038/27150.
[30] N. R. Tanvir, A. J. Levan, A. S. Fruchter, J. Hjorth. et al.(2013). A 'kilonova' associated with the short-duration -ray burst GRB 130603B. Nature.500(7464):547-549. DOI: 10.1038/27150.
[31] A. Maeder. (2002). Stellar evolution with rotation IX. The effects of the production of asymmetric nebulae on the internal evolution. Astronomy and Astrophysics.392(2):575-584. DOI: 10.1038/27150.
[32] P. M. Vreeswijk, C. Ledoux, A. Smette, S. L. Ellison. et al.(2007). Rapid-response mode VLT/UVES spectroscopy of GRB 060418. Conclusive evidence for UV pumping from the time evolution of Fe II and Ni II excited- and metastable-level populations. Astronomy & Astrophysics.468(1):83-96. DOI: 10.1038/27150.
[33] E. M. Levesque, R. Chornock, A. M. Soderberg, E. Berger. et al.(2012). Host galaxy properties of the subluminous GRB 120422A/SN 2012bz. The Astrophysical Journal.758(2, article 92). DOI: 10.1038/27150.
[34] J. S. Bloom, S. G. Djorgovski, S. R. Kulkarni. (2001). The redshift and the ordinary host galaxy of GRB 970228. Astrophysical Journal.554(2):678-683. DOI: 10.1038/27150.
[35] J. X. Prochaska, H.-W. Chen, J. S. Bloom. (2006). Dissecting the circumstellar environment of -ray burst progenitors. Astrophysical Journal.648(1):95-110. DOI: 10.1038/27150.
[36] J. Hjorth, D. Watson, J. P. U. Fynbo, P. A. Price. et al.(2005). The optical afterglow of the short -ray burst GRB 050709. Nature.437(7060):859-861. DOI: 10.1038/27150.
[37] J. H. Groh, G. Meynet, C. Georgy, S. Ekström. et al.(2013). Fundamental properties of core-collapse supernova and GRB progenitors: predicting the look of massive stars before death. Astronomy and Astrophysics.558, article no. A131. DOI: 10.1038/27150.
[38] Z.-P. Jin, K. Hotokezaka, X. Li, M. Tanaka. et al.(2016). The Macronova in GRB 050709 and the GRB-macronova connection. Nature Communications.7. DOI: 10.1038/27150.
[39] A. M. Soderberg, E. Berger, M. Kasliwal, D. A. Frail. et al.(2006). The afterglow, energetics, and host galaxy of the short-hard gamma-ray burst 051221a. Astrophysical Journal.650(1 I):261-271. DOI: 10.1038/27150.
[40] C. Georgy, S. Ekström, G. Meynet, P. Massey. et al.(2012). Grids of stellar models with rotation: II. WR populations and supernovae/GRB progenitors at Z = 0.014. The Astronomy and Astrophysics.542, article A29. DOI: 10.1038/27150.
[41] S. Ekström, C. Georgy, P. Eggenberger, G. Meynet. et al.(2012). Grids of stellar models with rotation I. Models from 0.8 to 120 M at solar metallicity ( = 0.014). Astronomy and Astrophysics.537, article no. A146. DOI: 10.1038/27150.
[42] M. Modjaz, K. Z. Stanek, P. M. Garnavich, P. Berlind. et al.(2006). Early-time photometry and spectroscopy of the fast evolving SN 2006aj associated with GRB 060218. Astrophysical Journal.645(1):L21-L24. DOI: 10.1038/27150.
[43] S. Klose, A. Nicuesa Guelbenzu, T. Kruehler. (2013). Supernova 2013fu = GRB 130831A. Central Bureau Electronic Telegrams(3677). DOI: 10.1038/27150.
[44] N. Mirabal, J. P. Halpern, D. An, J. R. Thorstensen. et al.(2006). GRB 060218/SN 2006aj: a gamma-ray burst and prompt supernova at z = 0.0335. The Astrophysical Journal Letters.643(2):L99-L102. DOI: 10.1038/27150.
[45] C. C. Thöne, J. P. U. Fynbo, G. Östlin, M.-J. Bo. et al.(2008). Spatially resolved properties of the GRB 060505 host: implications for the nature of the progenitor. Astrophysical Journal.676(2):1151-1161. DOI: 10.1038/27150.
[46] M. Arabsalmani, S. Roychowdhury, M. A. Zwaan, N. Kanekar. et al.(2015). First measurement of H I 21 cm emission from a GRB host galaxy indicates a post-merger system. Monthly Notices of the Royal Astronomical Society: Letters.454(1):L51-L55. DOI: 10.1038/27150.
[47] A. Pozanenko, E. Mazaeva, A. Sergeev. (2015). GRB 150518A: possible SN observations. GRB Coordinates Network(17903). DOI: 10.1038/27150.
[48] V. D'Elia, E. Pian, A. Melandri, P. D'Avanzo. et al.(2015). SN 2013dx associated with GRB 130702A: A detailed photometric and spectroscopic monitoring and a study of the environment. Astronomy and Astrophysics.577, article A116. DOI: 10.1038/27150.
[49] E. Pian, P. A. Mazzali, N. Masetti. (2006). An optical supernova associated with the X-ray flash XRF 060218. Nature.442:1011-1013. DOI: 10.1038/27150.
[50] E. M. Levesque, E. Berger, A. M. Soderberg, R. Chornock. et al.(2011). Metallicity in the GRB 100316D/SN 2010bh host complex. The Astrophysical Journal.739(1):23. DOI: 10.1038/27150.
[51] A. Melandri, E. Pian, V. D'Elia, P. D'Avanzo. et al.(2014). Diversity of gamma-ray burst energetics vs. supernova homogeneity: SN 2013cq associated with GRB 130427A. Astronomy and Astrophysics.567, article A29. DOI: 10.1038/27150.
[52] L.-G. Strolger, A. G. Riess, T. Dahlen. (2004). The higher supernova search: supernovae to and constraints on type Ia progenitor models. The Astrophysical Journal.613(1):200-223. DOI: 10.1038/27150.
[53] G. Ghisellini, G. Ghirlanda, F. Tavecchio. (2007). Did we observe the supernova shock breakout in GRB 060218?. Monthly Notices of the Royal Astronomical Society: Letters.382(1):L77-L81. DOI: 10.1038/27150.
[54] C. Alard. (2000). Image subtraction using a space-varying kernel. Astronomy and Astrophysics Supplement Series.144(2):363-370. DOI: 10.1038/27150.
[55] C. Alard, R. H. Lupton. (1998). A method for optimal image subtraction. Astrophysical Journal.503(1):325-331. DOI: 10.1038/27150.
[56] Y. Kaneko, E. Ramirez-Ruiz, J. Granot, C. Kouveliotou. et al.(2007). Prompt and afterglow emission properties of gamma-ray bursts with spectroscopically identified supernovae. The Astrophysical Journal.654(1 I):385-402. DOI: 10.1038/27150.
[57] O. Bromberg, E. Nakar, T. Piran. (2011). Are low-luminosity gamma-ray bursts generated by relativistic jets?. The Astrophysical Journal Letters.739(2, article L55). DOI: 10.1038/27150.
[58] Z. Cano, D. Bersier, C. Guidorzi, S. Kobayashi. et al.(2011). XRF 100316D/SN 2010bh and the nature of gamma-ray burst supernovae. Astrophysical Journal.740(1, article no. 41). DOI: 10.1038/27150.
[59] M. De Pasquale, M. J. Page, D. A. Kann, S. R. Oates. et al.(2016). The 80 Ms follow-up of the X-ray afterglow of GRB 130427A challenges the standard forward shock model. Monthly Notices of the Royal Astronomical Society.462(1):1111-1122. DOI: 10.1038/27150.
[60] L. Christensen, P. M. Vreeswijk, J. Sollerman, C. C. Thöne. et al.(2008). IFU observations of the GRB 980425/SN 1998bw host galaxy: emission line ratios in GRB regions. The Astronomy and Astrophysics.490(1):45-59. DOI: 10.1038/27150.
[61] M. Della Valle, D. Malesani, J. S. Bloom, S. Benetti. et al.(2006). Hypernova signatures in the late rebrightening of GRB 050525A. Astrophysical Journal.642(2):L103-L106. DOI: 10.1038/27150.
[62] E. Le Floc'H, V. Charmandaris, K. Gordon, W. J. Forrest. et al.(2012). The first infrared study of the close environment of a long gamma-ray burst. The Astrophysical Journal.746(1, article 7). DOI: 10.1038/27150.
[63] A. J. Levan, N. R. Tanvir, A. S. Fruchter, J. Hjorth. et al.(2014). Hubble space telescope observations of the afterglow, supernova, and host galaxy associated with the extremely bright GRB 130427A. The Astrophysical Journal.792(2, article 115). DOI: 10.1038/27150.
[64] G. Crew, G. Ricker, J.-L. Atteia. (2005). GRB050824, HETE-2 observation. GRB Coordinates Network(3890). DOI: 10.1038/27150.
[65] H. Krimm, L. Barbier, S. Barthelmy. (2005). GRB 050824: BAT refined analysis of a soft weak burst. GRB Coordinates Network, Circular Service.3871, article 1. DOI: 10.1038/27150.
[66] M. J. Michałowski, L. K. Hunt, E. Palazzi. (2014). Spatially-resolved dust properties of the GRB 980425 host galaxy. Astronomy & Astrophysics.562, article A70. DOI: 10.1038/27150.
[67] J. R. Cummings, S. D. Barthelmy, W. H. Baumgartner. (2012). GRB 120714B: swift-BAT refined analysis. GRB Coordinates Network(13481). DOI: 10.1038/27150.
[68] Z. Cano, A. de Ugarte Postigo, D. Perley, T. Krühler. et al.(2015). GRB 140606B/iPTF14bfu: detection of shock-breakout emission from a cosmological -ray burst?. Monthly Notices of the Royal Astronomical Society.452(2):1535-1552. DOI: 10.1038/27150.
[69] D. Kasen, N. R. Badnell, J. Barnes. (2013). Opacities and spectra of the -process ejecta from neutron star mergers. The Astrophysical Journal.774(1, article 25). DOI: 10.1038/27150.
[70] P. Ferrero, D. A. Kann, A. Zeh, S. Klose. et al.(2006). The GRB 060218/SN 2006aj event in the context of other gamma-ray burst supernovae. Astronomy & Astrophysics.457(3):857-864. DOI: 10.1038/27150.
[71] E. P. Mazets, S. V. Golenetskii, V. N. Il'Inskii, V. N. Panov. et al.(1981). Catalog of cosmic gamma-ray bursts from the KONUS experiment data—parts I and II. Astrophysics and Space Science.80(1):3-83. DOI: 10.1038/27150.
[72] Z. Cano, A. De Ugarte Postigo, A. Pozanenko, N. Butler. et al.(2014). A trio of gamma-ray burst supernovae: GRB 120729A, GRB 130215A/SN 2013ez, and GRB 130831A/SN 2013fu. Astronomy and Astrophysics.568, article no. A19. DOI: 10.1038/27150.
[73] C. Kouveliotou, C. A. Meegan, G. J. Fishman, N. P. Bhat. et al.(1993). Identification of two classes of gamma-ray bursts. Astrophysical Journal.413(2):L101-L104. DOI: 10.1038/27150.
[74] C. M. Irwin, R. A. Chevalier. (2016). Jet or shock breakout? The low-luminosity GRB 060218. Monthly Notices of the Royal Astronomical Society.460(2):1680-1704. DOI: 10.1038/27150.
[75] R. L. C. Starling, K. Wiersema, A. J. Levan, T. Sakamoto. et al.(2011). Discovery of the nearby long, soft GRB 100316D with an associated supernova. Monthly Notices of the Royal Astronomical Society.411(4):2792-2803. DOI: 10.1038/27150.
[76] K. L. Page, R. L. C. Starling, G. Fitzpatrick, S. B. Pandey. et al.(2011). GRB 090618: detection of thermal X-ray emission from a bright gamma-ray burst. Monthly Notices of the Royal Astronomical Society.416(3):2078-2089. DOI: 10.1038/27150.
[77] R. Chary, E. Berger, L. Cowie. (2007). Spitzer observations of gamma-ray burst host galaxies: a unique window into high-redshift chemical evolution and star formation. The Astrophysical Journal.671(1):272-277. DOI: 10.1038/27150.
[78] J. Greiner, D. B. Fox, P. Schady, T. Krühler. et al.(2015). Gamma-ray bursts trace uv metrics of star formation over 3 < < 5. Astrophysical Journal.809(1, article 76). DOI: 10.1038/27150.
[79] K. Wiersema, A. J. Van Der Horst, D. A. Kann, E. Rol. et al.(2008). Spectroscopy and multiband photometry of the afterglow of intermediate duration -ray burst GRB 040924 and its host galaxy. Astronomy and Astrophysics.481(2):319-326. DOI: 10.1038/27150.
[80] T. Sakamoto, L. Barbier, S. D. Barthelmy, J. R. Cummings. et al.(2006). Confirmation of the E-Eiso (Amati) relation from the X-ray flash XRF 050416A observed by the Swift burst alert telescope. Astrophysical Journal.636(2):L73-L76. DOI: 10.1038/27150.
[81] K. Misra, L. Resmi, S. B. Pandey, D. Bhattacharya. et al.(2005). Optical observations and multiband modelling of the afterglow of GRB 041006: evidence of a hard electron energy spectrum. Bulletin of the Astronomical Society of India.33(4):487-497. DOI: 10.1038/27150.
[82] F. Y. Wang, Z. G. Dai. (2014). Long GRBs are metallicity-biased tracers of star formation: evidence from host galaxies and redshift distribution. The Astrophysical Journal.213(1):15. DOI: 10.1038/27150.
[83] A. M. Soderberg, E. Nakar, S. B. Cenko, P. B. Cameron. et al.(2007). A spectacular radio flare from XRF 050416a at 40 days and implications for the nature of X-ray flashes. Astrophysical Journal.661(2 I):982-994. DOI: 10.1038/27150.
[84] J. Japelj, S. D. Vergani, R. Salvaterra. (2016). Are LGRBs biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of bright LGRBs. II: star formation rates and metallicities at. Astronomy & Astrophysics.590, article A129. DOI: 10.1038/27150.
[85] E. F. Schlafly, D. P. Finkbeiner. (2011). Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophysical Journal.737(2, article no. 103). DOI: 10.1038/27150.
[86] D. J. Schlegel, D. P. Finkbeiner, M. Davis. (1998). Maps of dust infrared emission for use in estimation of reddening and cosmic microwave background radiation foregrounds. The Astrophysical Journal Letters.500(2):525-553. DOI: 10.1038/27150.
[87] D. A. Kann, S. Klose, B. Zhang, D. Malesani. et al.(2010). The afterglows of Swift-era gamma-ray bursts. I. Comparing pre-Swift and Swift-era long/soft (type II) GRB optical afterglows. Astrophysical Journal.720(2):1513-1558. DOI: 10.1038/27150.
[88] C. Firmani, V. Avila-Reese, G. Ghisellini, A. V. Tutukov. et al.(2004). Formation rate, evolving luminosity function, jet structure, and progenitors for long gamma-ray bursts. Astrophysical Journal.611(2 I):1033-1040. DOI: 10.1038/27150.
[89] D. Watson, J. Hjorth, A. Levan, P. Jakobsson. et al.(2004). A very low luminosity X-ray flash: XMM-Newton observations of GRB 031203. Astrophysical Journal.605(2):L101-L104. DOI: 10.1038/27150.
[90] P. A. Price, B. P. Schmidt. Towards measuring the cosmic gamma-ray burst rate. .727:503-507. DOI: 10.1038/27150.
[91] B. Thomsen, J. Hjorth, D. Watson, J. Gorosabel. et al.(2004). The supernova 2003lw associated with X-ray flash 031203. Astronomy and Astrophysics.419(2):L21-L25. DOI: 10.1038/27150.
[92] P. Natarajan, B. Albanna, J. Hjorth, E. Ramirez-Ruiz. et al.(2005). The redshift distribution of gamma-ray bursts revisited. Monthly Notices of the Royal Astronomical Society.364(1):L8-L12. DOI: 10.1038/27150.
[93] B. E. Cobb, C. D. Bailyn, P. G. Van Dokkum, P. Natarajan. et al.(2006). SN 2006aj and the nature of low-luminosity gamma-ray bursts. Astrophysical Journal.645(2):L113-L116. DOI: 10.1038/27150.
[94] D. A. Kann, S. Klose, A. Zeh. (2006). Signatures of extragalactic dust in PRE-swift GRB afterglows. The Astrophysical Journal.641(2):993-1009. DOI: 10.1038/27150.
[95] D. A. Kann, S. Klose, B. Zhang, S. Covino. et al.(2011). The afterglows of swift-era gamma-ray bursts. II. Type I GRB versus type II GRB optical afterglows. The Astrophysical Journal.734(2, article 96). DOI: 10.1038/27150.
[96] J. Japelj, S. Covino, A. Gomboc, S. D. Vergani. et al.(2015). Spectrophotometric analysis of gamma-ray burst afterglow extinction curves with X-Shooter. Astronomy and Astrophysics.579, article no. A74. DOI: 10.1038/27150.
[97] W. Fong, E. Berger, D. B. Fox. (2010). Hubble space telescope observations of short gammaray burst host galaxies: morphologies, offsets, and local environments. Astrophysical Journal.708:9-25. DOI: 10.1038/27150.
[98] P. A. Mazzali, K. Nomoto, F. Patat, K. Maeda. et al.(2001). The nebular spectra of the hypernova SN 1998bw and evidence for asymmetry. The Astrophysical Journal.559(2):1047-1053. DOI: 10.1038/27150.
[99] M. D. Valle. (2011). Supernovae and gamma-ray bursts: a decade of observations. International Journal of Modern Physics D.20(10):1745-1754. DOI: 10.1038/27150.
[100] M. Modjaz. (2011). Stellar forensics with the supernova-GRB connection—ludwig Biermann Award Lecture 2010. Astronomische Nachrichten.332(5):434-447. DOI: 10.1038/27150.
[101] E. Bissaldi, F. Calura, F. Matteucci, F. Longo. et al.(2007). The connection between gamma-ray bursts and supernovae Ib/c. Astronomy & Astrophysics.471(2):585-597. DOI: 10.1038/27150.
[102] D. Eichler, M. Livio, T. Piran, D. N. Schramm. et al.(1989). Nucleosynthesis, neutrino bursts and -rays from coalescing neutron stars. Nature.340(6229):126-128. DOI: 10.1038/27150.
[103] K. Maeda, K. Kawabata, M. Tanaka, K. Nomoto. et al.(2007). SN 2006aj associated with XRF 060218 at late phases: nucleosynthesis signature of a neutron star-driven explosion. Astrophysical Journal.658(1):L5-L8. DOI: 10.1038/27150.
[104] H. Sana, S. E. de Mink, A. de Koter, N. Langer. et al.(2012). Binary interaction dominates the evolution of massive stars. Science.337(6093):444-446. DOI: 10.1038/27150.
[105] F. Bufano, E. Pian, J. Sollerman, S. Benetti. et al.(2012). The highly energetic expansion of SN 2010bh associated with GRB 100316D. The Astrophysical Journal.753(1, article 67). DOI: 10.1038/27150.
[106] T. Linden, V. Kalogera, J. F. Sepinsky, A. Prestwich. et al.(2010). The effect of starburst metallicity on bright X-ray binary formation pathways. The Astrophysical Journal.725(2):1984-1994. DOI: 10.1038/27150.
[107] W. Fong, E. Berger. (2013). The locations of short gamma-ray bursts as evidence for compact object binary progenitors. Astrophysical Journal.776(1, article 18). DOI: 10.1038/27150.
[108] S. Mukherjee, E. D. Feigelson, G. Jogesh Babu, F. Murtagh. et al.(1998). Three types of gamma-ray bursts. Astrophysical Journal.508(1):314-327. DOI: 10.1038/27150.
[109] S. E. Woosley, R. G. Eastman, B. P. Schmidt. (1999). Gamma-ray bursts and type Ic supernova SN 1998bw. The Astrophysical Journal.516(2):788-796. DOI: 10.1038/27150.
[110] C. J. Conselice, J. A. Blackburne, C. Papovich. (2005). The luminosity, stellar mass, and number density evolution of field galaxies of known morphology from z = 0.5 to 3. Astrophysical Journal.620(2):564-583. DOI: 10.1038/27150.
[111] G. Leloudas, S. Schulze, T. Krühler, J. Gorosabel. et al.(2015). Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies. Monthly Notices of the Royal Astronomical Society.449(1):917-932. DOI: 10.1038/27150.
[112] K. F. Neugent, P. Massey. (2014). The close binary frequency of wolf-Rayet stars as a function of metallicity in M31 and M33. Astrophysical Journal.789(1, article no. 10). DOI: 10.1038/27150.
[113] P. Höflich, J. C. Wheeler, L. Wang. (1999). Aspherical explosion models for SN 1998bw/GRB 980425. Astrophysical Journal.521(1):179-189. DOI: 10.1038/27150.
[114] R. Narayan, B. Paczyński, T. Piran. (1992). Gamma-ray bursts as the death throes of massive binary stars. The Astrophysical Journal.395(2):L83-L86. DOI: 10.1038/27150.
[115] K. Z. Stanek, O. Y. Gnedin, J. F. Beacom, A. P. Gould. et al.(2006). Protecting life in the Milky Way: metals keep the GRBs away. Acta Astronomica.56(4):333-345. DOI: 10.1038/27150.
[116] K. Iwamoto. (1999). On the radio-to-X-ray light curves of SN 1998bw and GRB 980425. Astrophysical Journal.512(1):L47-L50. DOI: 10.1038/27150.
[117] J. M. C. Cerón, M. J. MichaŁowski, J. Hjorth, D. Watson. et al.(2006). Star formation rates and stellar masses in ~ 1 gamma-ray burst hosts. Astrophysical Journal.653(2):L85-L88. DOI: 10.1038/27150.
[118] P. L. Kelly, A. V. Filippenko, M. Modjaz, D. Kocevski. et al.(2014). The host galaxies of fast-ejecta core-collapse supernovae. Astrophysical Journal.789(1, article no. 23). DOI: 10.1038/27150.
[119] C. D. Matzner, C. F. Mckee. (1999). The expulsion of stellar envelopes in core-collapse supernovae. Astrophysical Journal.510(1):379-403. DOI: 10.1038/27150.
[120] J. F. Graham, A. S. Fruchter. The relative rate of LGRB formation as a function of metallicity. . DOI: 10.1038/27150.
[121] R. Margutti, D. Milisavljevic, A. M. Soderberg, C. Guidorzi. et al.(2014). Relativistic supernovae have shorter-lived central engines or more extended progenitors: the case of SN 2012ap. The Astrophysical Journal.797, article 107. DOI: 10.1038/27150.
[122] A. Sakurai. (1960). On the problem of a shock wave arriving at the edge of a gas. Communications on Pure and Applied Mathematics.13:353-370. DOI: 10.1038/27150.
[123] P. A. R. Ade, N. Aghanim, C. Armitage-Caplan. (2013). Planck 2013 results. XVI. Cosmological parameters. A & A.571, article A16. DOI: 10.1038/27150.
[124] I. Horvath, L. G. Balazs, Z. Bagoly, P. Veres. et al.(2008). Classification of Swift's gamma-ray bursts. Astronomy and Astrophysics.489(1):L1-L4. DOI: 10.1038/27150.
[125] J. Hjorth. (2013). The supernova-gamma-ray burst-jet connection. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.371(1992). DOI: 10.1038/27150.
[126] N. Gehrels, J. P. Norris, S. D. Barthelmy, J. Granot. et al.(2006). A new -ray burst classification scheme from GRB 060614. Nature.444(7122):1044-1046. DOI: 10.1038/27150.
[127] Z. Cano. (2013). A new method for estimating the bolometric properties of Ibc supernovae. Monthly Notices of the Royal Astronomical Society.434(2):1098-1116. DOI: 10.1038/27150.
[128] J. P. Fynbo, D. Watson, C. C. Thöne, J. Sollerman. et al.(2006). No supernovae associated with two long-duration -ray bursts. Nature.444(7122):1047-1049. DOI: 10.1038/27150.
[129] A. de Ugarte Postigo, I. Horváth, P. Veres, Z. Bagoly. et al.(2011). Searching for differences in Swift’s intermediate GRBs. Astronomy & Astrophysics.525, article no. A109. DOI: 10.1038/27150.
[130] J. Hjorth, J. S. Bloom. (2012). The gamma-ray burst—supernova connection. Gamma-Ray Bursts:169-190. DOI: 10.1038/27150.
[131] M. M. Shara, S. M. Crawford, D. Vanbeveren, A. F. Moffat. et al.(2016). The spin rates of O stars in WR + O binaries – I. Motivation, methodology, and first results from SALT. Monthly Notices of the Royal Astronomical Society.464(2):2066-2074. DOI: 10.1038/27150.
[132] C. L. Fryer, A. Heger. (2005). Binary merger progenitors for gamma-ray bursts and hypernovae. The Astrophysical Journal.623(1):302-313. DOI: 10.1038/27150.
[133] M. Della Valle, G. Chincarini, N. Panagia, G. Tagliaferri. et al.(2006). An enigmatic long-lasting -ray burst not accompanied by a bright supernova. Nature.444(7122):1050-1052. DOI: 10.1038/27150.
[134] A. J. Levan, N. R. Tanvir, R. L. C. Starling. (2014). A new population of ultra-long duration gamma-ray bursts. The Astrophysical Journal.781, artile 13. DOI: 10.1038/27150.
[135] D. Lazzati, B. J. Morsony, C. H. Blackwell, M. C. Begelman. et al.(2012). Unifying the zoo of jet-driven stellar explosions. Astrophysical Journal.750(1, article no. 68). DOI: 10.1038/27150.
[136] E. Le Floc'h, P.-A. Duc, I. F. Mirabel, D. B. Sanders. et al.(2003). Are the hosts of gamma-ray bursts sub-luminous and blue galaxies?. Astronomy and Astrophysics.400(2):499-510. DOI: 10.1038/27150.
[137] S. Schulze, R. Chapman, J. Hjorth. (2015). The Optically Unbiased GRB Host (TOUGH) Survey. VII. The host galaxy luminosity function: probing the relationship between GRBs and star formation to redshift 6. The Astrophysical Journal.808:73. DOI: 10.1038/27150.
[138] P. Podsiadlowski, N. Ivanova, S. Justham, S. Rappaport. et al.(2010). Explosive common-envelope ejection: implications for -ray bursts and low-mass black-hole binaries. Monthly Notices of the Royal Astronomical Society.406(2):840-847. DOI: 10.1038/27150.
[139] P. A. Mazzali, J. Deng, N. Tominaga, K. Maeda. et al.(2003). The type Ic hypernova SN 2003dh/GRB 030329. The Astrophysical Journal.599(2):L95-L98. DOI: 10.1038/27150.
[140] M. Trenti, R. Perna, R. Jimenez. (2015). The luminosity and stellar mass functions of GRB host galaxies: insight into the metallicity bias. Astrophysical Journal.802(2, article no. 103). DOI: 10.1038/27150.
[141] J. D. Lyman, D. Bersier, P. A. James, P. A. Mazzali. et al.(2016). Bolometric light curves and explosion parameters of 38 stripped-envelope core-collapse supernovae. Monthly Notices of the Royal Astronomical Society.457(1):328-350. DOI: 10.1038/27150.
[142] L. Christensen, J. Hjorth, J. Gorosabel. (2004). UV star-formation rates of GRB host galaxies. Astronomy and Astrophysics.425(3):913-926. DOI: 10.1038/27150.
[143] S. Nagataki, A. Mizuta, K. Sato. (2006). Explosive nucleosynthesis in GRB jets accompanied by hypernovae. Astrophysical Journal.647(2):1255-1268. DOI: 10.1038/27150.
[144] S. D. Vergani, R. Salvaterra, J. Japelj, E. Le Floc'h. et al.(2015). Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the /BAT6 complete sample of LGRBs: I. Stellar mass at. The Astronomy and Astrophysics.581, article A102. DOI: 10.1038/27150.
[145] J. F. Graham, A. S. Fruchter. (2013). The metal aversion of long-duration gamma-ray bursts. Astrophysical Journal.774(2, article no. 119). DOI: 10.1038/27150.
[146] L. Amati, M. Della Valle, F. Frontera, D. Malesani. et al.(2007). On the consistency of peculiar GRBs 060218 and 060614 with the E p,i—E iso correlation. Astronomy and Astrophysics.463(3):913-919. DOI: 10.1038/27150.
[147] N. R. Tanvir, V. E. Barnard, A. W. Blain, A. S. Fruchter. et al.(2004). The submillimetre properties of gamma-ray burst host galaxies. Monthly Notices of the Royal Astronomical Society.352(3):1073-1080. DOI: 10.1038/27150.
[148] T. Nakamura, P. A. Mazzali, K. Nomoto, K. Iwamoto. et al.(2001). Light curve and spectral models for the hypernova SN 1998bw associated with GRB 980425. Astrophysical Journal.550(2):991-999. DOI: 10.1038/27150.
[149] L. Amati, F. Frontera, M. Tavani. (2002). Intrinsic spectra and energetics of BeppoSAX Gamma-Ray Bursts with known redshifts. Astronomy & Astrophysics.390:81-89. DOI: 10.1038/27150.
[150] N. Gehrels, G. Chincarini, P. Giommi. (2004). The swift gamma-ray burst mission. The Astrophysical Journal.611(2):1005-1020. DOI: 10.1038/27150.
[151] A. J. Levan. (2015). Swift discoveries of new populations of extremely long duration high energy transient. Journal of High Energy Astrophysics.7:44-55. DOI: 10.1038/27150.
[152] J. Heise. X-ray flashes and X-ray counterparts of gamm-ray bursts. .662:229-236. DOI: 10.1038/27150.
[153] A. J. Van Marle, N. Langer, A. Achterberg, G. García-Segura. et al.(2006). Forming a constant density medium close to long gamma-ray bursts. Astronomy and Astrophysics.460(1):105-116. DOI: 10.1038/27150.
[154] S. Schulze, S. Klose, G. Björnsson, P. Jakobsson. et al.(2011). The circumburst density profile around GRB progenitors: a statistical study. Astronomy & Astrophysics.526(3, article A23). DOI: 10.1038/27150.
[155] A. Clocchiatti, N. B. Suntzeff, R. Covarrubias, P. Candia. et al.(2011). The ultimate light curve of SN 1998bw/GRB 980425. Astronomical Journal.141(5, article 163). DOI: 10.1038/27150.
[156] Z. Cano, D. Bersier, C. Guidorzi, R. Margutti. et al.(2011). A tale of two GRB-SNe at a common redshift of = 0.54. Monthly Notices of the Royal Astronomical Society.413(1):669-685. DOI: 10.1038/27150.
[157] A. J. Van Marie, N. Langer, G. García-Segura. (2005). Constraints on gamma-ray burst and supernova progenitors through circumstellar absorption lines. Astronomy and Astrophysics.444(3):837-847. DOI: 10.1038/27150.
[158] A. Heger, C. L. Fryer, S. E. Woosley, N. Langer. et al.(2003). How massive single stars end their life. The Astrophysical Journal.591(1):288-300. DOI: 10.1038/27150.
[159] E. Nakar. (2007). Short-hard gamma-ray bursts. Physics Reports.442(1-6):166-236. DOI: 10.1038/27150.
[160] E. Berger. (2014). Short-duration gamma-ray bursts. Annual Review of Astronomy and Astrophysics.52:43-105. DOI: 10.1038/27150.
[161] P. M. Garnavich, B. E. Tucker, A. Rest, E. J. Shaya. et al.(2016). Shock breakout and early light curves of type II-P supernovae observed with. Astrophysical Journal.820(1). DOI: 10.1038/27150.
[162] J. Deng, N. Tominaga, P. A. Mazzali, K. Maeda. et al.(2005). On the light curve and spectrum of SN 2003dh separated from the optical afterglow of GRB 030329. Astrophysical Journal.624(2):898-905. DOI: 10.1038/27150.
[163] S. R. Kulkarni, D. A. Frail, M. H. Wieringa, R. D. Ekers. et al.(1998). Radio emission from the unusual supernova 1998bw and its association with the -ray burst of 25 April 1998. Nature.395(6703):663-669. DOI: 10.1038/27150.
[164] J. Hjorth, J. Sollerman, J. Gorosabel, J. Granot. et al.(2005). GRB 050509B: constraints on short gamma-ray burst models. Astrophysical Journal.630(2):L117-L120. DOI: 10.1038/27150.
[165] W. Zhang, C. L. Fryer. (2001). The merger of a helium star and a black hole: gamma-ray bursts. The Astrophysical Journal.550(1):357-367. DOI: 10.1038/27150.
[166] M. Modjaz, W. Li, N. Butler, R. Chornock. et al.(2009). From shock breakout to peak and beyond: extensive panchromatic observations of the type Ib supernova 2008D associated with swift x-ray transient 080109. Astrophysical Journal.702(1):226-248. DOI: 10.1038/27150.
[167] E. Berger, D. B. Fox, S. R. Kulkarni, D. A. Frail. et al.(2007). The ERO host galaxy of GRB 020127: implications for the metallicity of GRB progenitors. The Astrophysical Journal.660(1):504-508. DOI: 10.1038/27150.
[168] D. A. Perley, R. A. Perley, J. Hjorth, M. J. Michałowski. et al.(2015). Connecting GRBs and ULIRGs: a sensitive, unbiased survey for radio emission from gamma-ray burst host galaxies at 0 < < 2.5. Astrophysical Journal.801(2, article 102). DOI: 10.1038/27150.
[169] P. K. Blanchard, E. Berger, W.-F. Fong. (2016). The offset and host light distributions of long gamma-ray bursts: a new view from hst observations of swift bursts. The Astrophysical Journal.817(2, article 144). DOI: 10.1038/27150.
[170] R. A. Chevalier. (2012). Common envelope evolution leading to supernovae with dense interaction. Astrophysical Journal Letters.752(1, article L2). DOI: 10.1038/27150.
[171] J. S. Bloom, S. R. Kulkarni, S. G. Djorgovski. (2002). The observed offset distribution of gamma-ray bursts from their host galaxies: a robust clue to the nature of the progenitors. Astronomical Journal.123(3):1111-1148. DOI: 10.1038/27150.
[172] K. Maeda, P. A. Mazzali, J. Deng, K. Nomoto. et al.(2003). A two-component model for the light curves of hypernovae. The Astrophysical Journal.593(2):931-940. DOI: 10.1038/27150.
[173] A. De Ugarte Postigo, J. P. U. Fynbo, C. C. Thöne, L. Christensen. et al.(2012). The distribution of equivalent widths in long GRB afterglow spectra. Astronomy and Astrophysics.548, article no. A11. DOI: 10.1038/27150.
[174] D. Kocevski, A. A. West, M. Modjaz. (2009). Modeling the GRB host galaxy mass distribution: are GRBs unbiased tracers of star formation?. Astrophysical Journal.702(1):377-385. DOI: 10.1038/27150.
[175] Y. Ohtani, A. Suzuki, T. Shigeyama. (2013). Generation of high-energy photons at ultra-relativistic shock breakout in supernovae. The Astrophysical Journal.777(2, article 113). DOI: 10.1038/27150.
[176] E. F. Olivares, J. Greiner, P. Schady, A. Rau. et al.(2012). The fast evolution of SN 2010bh associated with XRF 100316D. Astronomy and Astrophysics.539, article no. A76. DOI: 10.1038/27150.
[177] L. P. Singer, M. M. Kasliwal, S. B. Cenko, D. A. Perley. et al.(2015). The needle in the 100 deg haystack: uncovering afterglows of GRBs with the palomar transient factory. The Astrophysical Journal.806(1, article 52). DOI: 10.1038/27150.
[178] J. A. Baldwin, M. M. Phillips, R. Terlevich. (1981). Classification parameters for the emission-line spectra of extragalactic objects. Publications of the Astronomical Society of the Pacific.93:5-19. DOI: 10.1038/27150.
[179] R. Margutti, C. Guidorzi, D. Lazzati, D. Milisavljevic. et al.(2015). Dust in the wind: the role of recent mass loss in long gamma-ray bursts. Astrophysical Journal.805(2, article 159). DOI: 10.1038/27150.
[180] L. Wang, J. C. Wheeler. (1998). The supernova-gamma-ray burst connection. Astrophysical Journal.504(2):L87-L90. DOI: 10.1038/27150.
[181] S. Campana, V. Mangano, A. J. Blustin, P. Brown. et al.(2006). The association of GRB 060218 with a supernova and the evolution of the shock wave. Nature.442(7106):1008-1010. DOI: 10.1038/27150.
[182] D. Xu, D. Watson, J. Fynbo. Mildly relativistic X-ray transient 080109 and SN 2008D: towards a continuum from energetic GRB/XRF to ordinary Ibc SN. .37:3512. DOI: 10.1038/27150.
[183] J. C. Tan, C. D. Matzner, C. F. McKee. (2001). Trans-relativistic blast waves in supernovae as gamma-ray burst progenitors. Astrophysical Journal.551(2):946-972. DOI: 10.1038/27150.
[184] K. Nomoto, N. Tominaga, M. Tanaka. (2006). Diversity of the supernova—gamma-ray burst connection. Nuovo Cimento B Serie.121:1207-1222. DOI: 10.1038/27150.
[185] C. Wainwright, E. Berger, B. E. Penprase. (2007). A morphological study of gamma-ray burst host galaxies. The Astrophysical Journal.657(1 I):367-377. DOI: 10.1038/27150.
[186] S. E. Woosley, J. S. Bloom. (2006). The supernova-gamma-ray burst connection. Annual Review of Astronomy and Astrophysics.44:507-556. DOI: 10.1038/27150.
[187] E. Nakar, R. Sari. (2012). Relativistic shock breakouts—a variety of gamma-ray flares: from low-luminosity gamma-ray bursts to type Ia supernovae. Astrophysical Journal.747(2, article 88). DOI: 10.1038/27150.
[188] E. Waxman, P. Mészáros, S. Campana. (2007). GRB 060218: a relativistic supernova shock breakout. Astrophysical Journal.667(1):351-357. DOI: 10.1038/27150.
[189] A. S. Fruchter, A. J. Levan, L. Strolger. (2006). Long -ray bursts and core-collapse supernovae have different environments. Nature.441:463-468. DOI: 10.1038/27150.
[190] J. S. Bloom, S. R. Kulkarni, S. G. Djorgovski, A. C. Elchelberger. et al.(1999). The unusual afterglow of the -ray burst of 26 March 1998 as evidence for a supernova connection. Nature.401(6752):453-456. DOI: 10.1038/27150.
[191] E. Nakar. (2015). A unified picture for low-luminosity and long gamma-ray bursts based on the extended progenitor of llGRB 060218/SN 2006aj. The Astrophysical Journal.807:172. DOI: 10.1038/27150.
[192] J. M. Castro Cerón, M. J. Michallowski, J. Hjorth, D. Malesani. et al.(2010). On the distribution of stellar masses in gamma-ray burst host galaxies. The Astrophysical Journal.721(2):1919-1927. DOI: 10.1038/27150.
[193] T. J. Galama, N. Tanvir, P. M. Vreeswijk, R. A. M. J. Wijers. et al.(2000). Evidence for a supernova in reanalyzed optical and near-infrared images of GRB 970228. The Astrophysical Journal.536(1):185-194. DOI: 10.1038/27150.
[194] R. Margutti, A. M. Soderberg, M. H. Wieringa, P. G. Edwards. et al.(2013). The signature of the central engine in the weakest relativistic explosions: GRB 100316D. Astrophysical Journal.778(1, article no. 18). DOI: 10.1038/27150.
[195] D. E. Reichart. (1999). GRB 970228 revisited: evidence for a supernova in the light curve and late spectral energy distribution of the afterglow. Astrophysical Journal.521(2):L111-L115. DOI: 10.1038/27150.
[196] A. M. Soderberg, S. Chakraborti, G. Pignata, R. A. Chevalier. et al.(2010). A relativistic type Ibc supernova without a detected -ray burst. Nature.463(7280):513-515. DOI: 10.1038/27150.
[197] K. M. Svensson, A. J. Levan, N. R. Tanvir, A. S. Fruchter. et al.(2010). The host galaxies of core-collapse supernovae and gamma-ray bursts. Monthly Notices of the Royal Astronomical Society.405(1):57-76. DOI: 10.1038/27150.
[198] C. C. Thöne, A. De Ugarte Postigo, C. L. Fryer, K. L. Page. et al.(2011). The unusual -ray burst GRB 101225A from a helium star/neutron star merger at redshift 0.33. Nature.480(7375):72-74. DOI: 10.1038/27150.
[199] J. Lippuner, L. F. Roberts. (2015). R-process lanthanide production and heating rates in kilonovae. The Astrophysical Journal.815, article 82. DOI: 10.1038/27150.
[200] J. Sollerman, J. P. U. Fynbo, J. Gorosabel, J. P. Halpern. et al.(2007). The nature of the X-ray flash of August 24 2005. Photometric evidence for an on-axis z = 0.83 burst with continuous energy injection and an associated supernova?. Astronomy and Astrophysics.466(3):839-846. DOI: 10.1038/27150.
[201] L. J. Kewley, W. R. Brown, M. J. Geller, S. J. Kenyon. et al.(2007). SDSS 0809+1729: connections between extremely metal-poor galaxies and gamma-ray burst hosts. Astronomical Journal.133(3):882-888. DOI: 10.1038/27150.
[202] B. D. Metzger, R. Fernández. (2014). Red or blue? A potential kilonova imprint of the delay until black hole formation following a neutron star merger. Monthly Notices of the Royal Astronomical Society.441(4):3444-3453. DOI: 10.1038/27150.
[203] J. Lequeux, M. Peimbert, J. F. Rayo, A. Serrano. et al.(1979). Chemical composition and evolution of irregular and blue compact galaxies. Astronomy & Astrophysics.80:155-166. DOI: 10.1038/27150.
[204] B. Paczyński. (1998). Are gamma-ray bursts in star-forming regions?. The Astrophysical Journal.494(1):L45-L48. DOI: 10.1038/27150.
[205] C. Freiburghaus, S. Rosswog, F.-K. Thielemann. (1999). R-process in neutron star mergers. Astrophysical Journal.525(2):L121-L124. DOI: 10.1038/27150.
[206] F. Patat, E. Cappellaro, J. Danziger, P. A. Mazzali. et al.(2001). The metamorphosis of SN 1998bw. Astrophysical Journal.555(2):900-917. DOI: 10.1038/27150.
[207] J. S. Bloom, S. Sigurdsson, O. R. Pols. (1999). The spatial distribution of coalescing neutron star binaries: implications for gamma-ray bursts. Monthly Notices of the Royal Astronomical Society.305(4):763-769. DOI: 10.1038/27150.
[208] C. L. Fryer, S. E. Woosley, D. H. Hartmann. (1999). Formation rates of black hole accretion disk gamma-ray bursts. The Astrophysical Journal.526(1):152-177. DOI: 10.1038/27150.
[209] T. J. Galama, P. M. Vreeswijk, J. van Paradijs, C. Kouveliotou. et al.(1998). An unusual supernova in the error box of the -ray burst of 25 April 1998. Nature.395(6703):670-672. DOI: 10.1038/27150.
[210] A. J. Castro-Tirado, J. Gorosabel. (1999). Optical observations of GRB afterglows: GRB 970508 and GRB 980326 revisited. Astronomy and Astrophysics Supplement Series.138(3):449-450. DOI: 10.1038/27150.
[211] E. Nakar, T. Piran. (2005). Outliers to the peak energy-isotropic energy relation in gamma-ray bursts. Monthly Notices of the Royal Astronomical Society: Letters.360(1):L73-L76. DOI: 10.1038/27150.
[212] K. Iwamoto, P. A. Mazzali, K. Nomoto, H. Umeda. et al.(1998). A hypernova model for the supernova associated with the -ray burst of 25 April 1998. Nature.395(6703):672-674. DOI: 10.1038/27150.
[213] X. Li, J. Hjorth. Light curve properties of supernovae associated with gamma-ray bursts. . DOI: 10.1038/27150.
[214] G. Björnsson, J. Hjorth, P. Jakobsson, L. Christensen. et al.(2001). The jet and the supernova in GRB 990712. The Astrophysical Journal.552(2):L121-L124. DOI: 10.1038/27150.
[215] J. Greiner, P. A. Mazzali, D. A. Kann. (2015). A very luminous magnetar-powered supernova associated with an ultra-long -ray burst. Nature.523(7559):189-192. DOI: 10.1038/27150.
[216] E. D. Skillman, R. C. Kennicutt, P. W. Hodge. (1989). Oxygen abundances in nearby dwarf irregular galaxies. The Astrophysical Journal.347:875-882. DOI: 10.1038/27150.
[217] P. Kumar, A. Panaitescu. (2000). Afterglow emission from naked gamma-ray bursts. The Astrophysical Journal.541(2):L51-L54. DOI: 10.1038/27150.
[218] A. J. Castro-Tirado, V. V. Sokolov, J. Gorosabel, J. M. Castro Cerón. et al.(2001). The extraordinarily bright optical afterglow of GRB 991208 and its host galaxy. Astronomy & Astrophysics.370(2):398-406. DOI: 10.1038/27150.
[219] D. Zaritsky, R. C. Kennicutt, J. P. Huchra. (1994). H II regions and the abundance properties of spiral galaxies. Astrophysical Journal.420(1):87-109. DOI: 10.1038/27150.
[220] O. Bromberg, E. Nakar, T. Piran, R. Sari. et al.(2013). Short versus long and collapsars versus non-collapsars: a quantitative classification of gamma-ray bursts. The Astrophysical Journal.764(2, article 179). DOI: 10.1038/27150.
[221] A. Zeh, S. Klose, D. H. Hartmann. (2004). A systematic analysis of supernova light in gamma-ray burst afterglows. Astrophysical Journal.609(2):952-961. DOI: 10.1038/27150.
[222] S. E. Woosley, J. R. Wilson, G. J. Mathews, R. D. Hoffman. et al.(1994). The r-process and neutrino-heated supernova ejecta. The Astrophysical Journal.433(1):229-246. DOI: 10.1038/27150.
[223] K. Beuermann, F. V. Hessman, K. Reinsch, H. Nicklas. et al.(1999). VLT observations of GRB 990510 and its environment. Astronomy and Astrophysics.352(1):L26-L30. DOI: 10.1038/27150.
[224] K. Z. Stanek, P. M. Garnavich, P. A. Nutzman, J. D. Hartman. et al.(2005). Deep photometry of grb 041006 afterglow: hypernova bump at redshift = 0.716. Astrophysical Journal.626(1):L5-L9. DOI: 10.1038/27150.
[225] J. M. Lattimer, D. N. Schramm. (1974). Black-hole-neutron-star collisions. The Astrophysical Journal.192:L145-L147. DOI: 10.1038/27150.
[226] J. X. Prochaska, J. S. Bloom, H.-W. Chen, K. C. Hurley. et al.(2004). The host galaxy of GRB 031203: implications of its low metallicity, low redshift, and starburst nature. The Astrophysical Journal.611(1):200. DOI: 10.1038/27150.
[227] M. Tanaka. (2016). Kilonova/macronova emission from compact binary mergers. Advances in Astronomy.2016-12. DOI: 10.1038/27150.
[228] T. Matheson, P. M. Garnavich, K. Z. Stanek. (2003). Photometry and spectroscopy of GRB 030329 and its associated supernova 2003dh: the first two months. The Astrophysical Journal.599(1):394-407. DOI: 10.1038/27150.
[229] J. Brinchmann, M. Pettini, S. Charlot. (2008). New insights into the stellar content and physical conditions of star-forming galaxies at z = 2-3 from spectral modelling. Monthly Notices of the Royal Astronomical Society.385(2):769-782. DOI: 10.1038/27150.
[230] B. D. Metzger, E. Berger. (2012). What is the most promising electromagnetic counterpart of a neutron star binary merger?. Astrophysical Journal.746(1, article no. 48). DOI: 10.1038/27150.
[231] C. C. Steidel, G. C. Rudie, A. L. Strom, M. Pettini. et al.(2014). Strong nebular line ratios in the spectra of ~ 2-3 star forming galaxies: first results from KBSS-mosfire. Astrophysical Journal.795(2, article 165). DOI: 10.1038/27150.
[232] K. Z. Stanek, T. Matheson, P. M. Garnavich, P. Martini. et al.(2003). Spectroscopic discovery of the supernova 2003dh associated with GRB 030329. The Astrophysical Journal.591(1):L17-L20. DOI: 10.1038/27150.
[233] J. Hjorth, J. Sollerman, P. Møller, J. P. U. Fynbo. et al.(2003). A very energetic supernova associated with the -ray burst of 29 March 2003. Nature.423(6942):847-850. DOI: 10.1038/27150.
[234] L. J. Kewley, C. Maier, K. Yabe, K. Ohta. et al.(2013). The cosmic BPT diagram: confronting theory with observations. Astrophysical Journal Letters.774(1, article no. L10). DOI: 10.1038/27150.
[235] N. Masetti, E. Palazzi, E. Pian, L. Hunt. et al.(2005). Late-epoch optical and near-infrared observations of the GRB 000911 afterglow and its host galaxy. Astronomy and Astrophysics.438(3):841-853. DOI: 10.1038/27150.
[236] G. Ghirlanda, L. Nava, G. Ghisellini. (2010). Spectral-luminosity relation within individual Fermi gamma rays bursts. Astronomy & Astrophysics.511(1, article A43). DOI: 10.1038/27150.
[237] D. Lazzati, S. Covino, G. Ghisellini, D. Fugazza. et al.(2001). The optical afterglow of GRB 000911: evidence for an associated supernova?. Astronomy and Astrophysics.378(3):996-1002. DOI: 10.1038/27150.
[238] A. Shahmoradi, R. J. Nemiroff. (2011). The possible impact of gamma-ray burst detector thresholds on cosmological standard candles. Monthly Notices of the Royal Astronomical Society.411(3):1843-1856. DOI: 10.1038/27150.
[239] J. S. Bloom, S. R. Kulkarni, P. A. Price, D. Reichart. et al.(2002). Detection of a supernova signature associated with GRB 011121. Astrophysical Journal.572(1):L45-L49. DOI: 10.1038/27150.
[240] D. Xu, A. De Ugarte Postigo, G. Leloudas, T. Krühler. et al.(2013). Discovery of the broad-lined type IC SN 2013CQ associated with the very energetic GRB 130427A. Astrophysical Journal.776(2, article no. 98). DOI: 10.1038/27150.
[241] A. Shahmoradi, R. J. Nemiroff. (2010). Hardness as a spectral peak estimator for gamma-ray bursts. Monthly Notices of the Royal Astronomical Society.407(4):2075-2090. DOI: 10.1038/27150.
[242] J. Gorosabel, D. Pérez-Ramírez, J. Sollerman, A. De Ugarte Postigo. et al.(2005). The GRB 030329 host: a blue low metallicity subluminous galaxy with intense star formation. Astronomy and Astrophysics.444(3):711-721. DOI: 10.1038/27150.
[243] C. Firmani, J. I. Cabrera, V. Avila-Reese, G. Ghisellini. et al.(2009). Time-resolved spectral correlations of long-duration -ray bursts. Monthly Notices of the Royal Astronomical Society.393(4):1209-1218. DOI: 10.1038/27150.
[244] J. Sollerman, G. Östlin, J. P. U. Fynbo, J. Hjorth. et al.(2005). On the nature of nearby GRB/SN host galaxies. New Astronomy.11(2):103-115. DOI: 10.1038/27150.
[245] S. Rosswog. (2005). Mergers of neutron star-black hole binaries with small mass ratios: nucleosynthesis, gamma-ray bursts, and electromagnetic transients. The Astrophysical Journal.634(2):1202-1213. DOI: 10.1038/27150.
[246] Z. Cano. (2014). Gamma-ray burst supernovae as standardizable candles. Astrophysical Journal.794(2, article no. 121). DOI: 10.1038/27150.
[247] V. L. Toy, S. B. Cenko, J. M. Silverman, N. R. Butler. et al.(2016). Optical and near-infrared observations of SN 2013dx associated with GRB 130702A. Astrophysical Journal.818, article 79. DOI: 10.1038/27150.
[248] M. J. Michałowski, J. Hjorth, J. M. Castro Cerón, D. Watson. et al.(2008). The nature of GRB-selected submillimeter galaxies: hot and young. Astrophysical Journal.672(2):817-824. DOI: 10.1038/27150.
[249] R. Hirschi, G. Meynet, A. Maeder. (2005). Yields of rotating stars at solar metallicity. The Astronomy and Astrophysics.433(3):1013-1022. DOI: 10.1038/27150.
[250] B. D. Metzger, G. Martínez-Pinedo, S. Darbha, E. Quataert. et al.(2010). Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Monthly Notices of the Royal Astronomical Society.406(4):2650-2662. DOI: 10.1038/27150.
[251] S. Schulze, D. Malesani, A. Cucchiara, N. R. Tanvir. et al.(2014). GRB 120422A/SN 2012bz: bridging the gap between low- and high-luminosity gamma-ray bursts. Astronomy & Astrophysics.566, article A102. DOI: 10.1038/27150.
[252] E. Le Floc'h, V. Charmandaris, W. J. Forrest, I. F. Mirabel. et al.(2006). Probing cosmic star formation using long gamma-ray bursts: new constraints from the Spitzer Space Telescope. Astrophysical Journal.642(2 I):636-652. DOI: 10.1038/27150.
[253] S. E. Woosley, A. Heger. (2006). The progenitor stars of gamma-ray bursts. The Astrophysical Journal.637(2):914-921. DOI: 10.1038/27150.
[254] S.-C. Yoon, N. Langer. (2005). Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts. Astronomy and Astrophysics.443(2):643-648. DOI: 10.1038/27150.
[255] M. Demleitner, A. Accomazzi, G. Eichhorn. ADS's dexter data extraction applet. .238:321. DOI: 10.1038/27150.
[256] S. R. Kulkarni. Modeling supernova-like explosions associated with gamma-ray bursts with short durations. . DOI: 10.1038/27150.
[257] O. Yaron, A. Gal-Yam. (2012). WISeREP-an interactive supernova data repository. Publications of the Astronomical Society of the Pacific.124(917):668-681. DOI: 10.1038/27150.
[258] S. Chakraborti, A. Soderberg, L. Chomiuk. (2015). A missing-link in the supernova-GRB connection: the case of SNp. The Astrophysical Journal.805(2):187. DOI: 10.1038/27150.
[259] A. M. Soderberg, S. R. Kulkarni, E. Nakar, E. Berger. et al.(2006). Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions. Nature.442(7106):1014-1017. DOI: 10.1038/27150.
[260] L. Amati, C. Guidorzi, F. Frontera, M. Della Valle. et al.(2008). Measuring the cosmological parameters with the E−E correlation of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society.391(2):577-584. DOI: 10.1038/27150.
[261] J. Elliott, T. Krühler, J. Greiner, S. Savaglio. et al.(2013). The low-extinction afterglow in the solar-metallicity host galaxy of -ray burst 110918A. Astronomy and Astrophysics.556, article A23. DOI: 10.1038/27150.
[262] A. Shemi, T. Piran. (1990). The appearance of cosmic fireballs. Astrophysical Journal.365(2):L55-L58. DOI: 10.1038/27150.
[263] N. Gehrels, C. L. Sarazin, P. T. O'Brien. (2005). A short big -ray burst apparently associated with an elliptical galaxy at redshift. Nature.437:851-854. DOI: 10.1038/27150.
[264] C. A. Tremonti, T. M. Heckman, G. Kauffmann, J. Brinchmann. et al.(2004). The origin of the mass-metallicity relation: insights from 53,000 star-forming galaxies in the sloan digital sky survey. The Astrophysical Journal.613(2):898. DOI: 10.1038/27150.
[265] K. Belczyński, T. Bulik, W. Zbijewski. (2000). Distribution of black hole binaries around galaxies. Astronomy & Astrophysics.355(2):479-484. DOI: 10.1038/27150.
[266] W. H. Lee, E. Ramirez-Ruiz. (2007). The progenitors of short gamma-ray bursts. New Journal of Physics.9(1):1. DOI: 10.1038/27150.
[267] M. Modjaz, Y. Q. Liu, F. B. Bianco, O. Graur. et al.(2015). The Spectral SN-GRB connection: systematic spectral comparisons between Type Ic Supernovae, and broad-lined Type Ic supernovae with and without gamma-ray bursts. The Astrophysical Journal.832(2):108. DOI: 10.1038/27150.
[268] G. Bazin, V. Ruhlmann-Kleider, N. Palanque-Delabrouille, J. Rich. et al.(2011). Photometric selection of type Ia supernovae in the supernova legacy survey. Astronomy and Astrophysics.534, article A43. DOI: 10.1038/27150.
[269] L.-X. Li, B. Paczyński. (1998). Transient events from neutron star mergers. Astrophysical Journal.507(1). DOI: 10.1038/27150.
[270] Z. Cano, P. Jakobsson, O. Pall Geirsson. Hubble diagrams of relativistic broad-lined type Ic supernovae. . DOI: 10.1038/27150.
[271] G. Meynet, A. Maeder. (2005). Stellar evolution with rotation XI. Wolf-Rayet star populations at different metallicities. Astronomy and Astrophysics.429(2):581-598. DOI: 10.1038/27150.
[272] R.-P. Kudritzki, J. Puls. (2000). Winds from hot stars. Annual Review of Astronomy and Astrophysics.38(1):613-666. DOI: 10.1038/27150.
[273] P. L. Kelly, R. P. Kirshner, M. Pahre. (2008). Long -ray bursts and Type Ic core-collapse supernovae have similar locations in hosts. Astrophysical Journal.687(2):1201-1207. DOI: 10.1038/27150.
[274] T. Piran, O. Bromberg, E. Nakar, R. Sari. et al.(2013). The long, the short and the weak: the origin of gamma-ray bursts. Philosophical Transactions of the Royal Society A.371(1992). DOI: 10.1038/27150.
[275] O. Bromberg, E. Nakar, T. Piran, R. Sari. et al.(2012). An observational imprint of the Collapsar model of long gamma-ray bursts. Astrophysical Journal.749(2, article no. 110). DOI: 10.1038/27150.
[276] M. Modjaz, L. Kewley, R. P. Kirshner, K. Z. Stanek. et al.(2008). Measured metallicities at the sites of nearby broad-lined type Ic supernovae and implications for the supernovae gamma-ray burst connection. Astronomical Journal.135(4):1136-1150. DOI: 10.1038/27150.
[277] B.-B. Zhang, Y.-Z. Fan, R.-F. Shen, D. Xu. et al.(2012). GRB 120422A: a low-luminosity gamma-ray burst driven by a central engine. The Astrophysical Journal.756, article 190. DOI: 10.1038/27150.
[278] C. Wolf, P. Podsiadlowski. (2007). The metallicity dependence of the long-duration gamma-ray burst rate from host galaxy luminosities. Monthly Notices of the Royal Astronomical Society.375(3):1049-1058. DOI: 10.1038/27150.
[279] P. Podsiadlowski, J. J. L. Hsu, P. C. Joss, R. R. Ross. et al.(1993). The progenitor of supernova 1993J: a stripped supergiant in a binary system?. Nature.364(6437):509-511. DOI: 10.1038/27150.
[280] S. A. Colgate. (1974). Early gamma rays from supernovae. The Astrophysical Journal.187:333-336. DOI: 10.1038/27150.
[281] S. E. Woosley, R. G. Eastman, T. A. Weaver, P. A. Pinto. et al.(1994). SN 1993J: a type IIb supernova. Astrophysical Journal.429(1):300-318. DOI: 10.1038/27150.
[282] S. A. Colgate. (1968). Prompt gamma rays and X rays from supernovae. Canadian Journal of Physics.46(10):S476-S480. DOI: 10.1038/27150.
[283] S. W. Falk. (1978). Shock steepening and prompt thermal emission in supernovae. The Astrophysical Journal Letters.225:L133-L136. DOI: 10.1038/27150.
[284] R. I. Klein, R. A. Chevalier. (1978). X-ray bursts from Type II supernovae. The Astrophysical Journal Letters.223:L109-L112. DOI: 10.1038/27150.
[285] G. Sonneborn, C. Fransson, P. Lundqvist, A. Cassatella. et al.(1997). The evolution of ultraviolet emission lines from circumstellar material surrounding SN 1987A. The Astrophysical Journal.477(2):848-864. DOI: 10.1038/27150.
[286] D. A. Kann, P. Schady, F. Olivares. Highly Luminous Supernovae associated with Gamma-Ray Bursts I.: GRB 111209A/SN 2011kl in the Context of Stripped-Envelope and Superluminous Supernovae. . DOI: 10.1038/27150.
[287] X.-Y. Wang, Z. Li, E. Waxman, P. Mészáros. et al.(2007). Nonthermal -ray/x-ray flashes from shock breakout in -ray burst-associated supernovae. The Astrophysical Journal.664(2 I):1026-1032. DOI: 10.1038/27150.
[288] L. Ensman, A. Burrows. (1992). Shock breakout in SN 1987A. Astrophysical Journal.393(2):742-755. DOI: 10.1038/27150.
[289] C. D. Matzner, Y. Levin, S. Ro. (2013). Oblique shock breakout in supernovae and gamma-ray bursts. I. Dynamics and observational implications. Astrophysical Journal.779(1, article no. 60). DOI: 10.1038/27150.
[290] O. D. Fox, K. Azalee Bostroem, S. D. Van Dyk, A. V. Filippenko. et al.(2014). Uncovering the putative B-star binary companion of the SN 1993J progenitor. The Astrophysical Journal.790(1):17. DOI: 10.1038/27150.
[291] J. R. Maund, S. J. Smartt, R. P. Kudritzki, P. Podsiadlowski. et al.(2004). The massive binary companion star to the progenitor of supernova 1993J. Nature.427(6970):129-131. DOI: 10.1038/27150.
[292] B. Katz, R. Budnik, E. Waxman. (2010). Fast radiation mediated shocks and supernova shock breakouts. Astrophysical Journal.716(1):781-791. DOI: 10.1038/27150.
[293] L. Dessart, D. J. Hillier, C. Li, S. Woosley. et al.(2012). On the nature of supernovae Ib and Ic. Monthly Notices of the Royal Astronomical Society.424(3):2139-2159. DOI: 10.1038/27150.
[294] J. Gorosabel, J. P. U. Fynbo, A. Fruchter, A. Levan. et al.(2005). A possible bright blue supernova in the afterglow of GRB 020305. The Astronomy and Astrophysics.437(2):411-418. DOI: 10.1038/27150.
[295] P. A. Price, S. R. Kulkarni, E. Berger, D. W. Fox. et al.(2003). Discovery of GRB 020405 and its late red bump. The Astrophysical Journal.589(2):838-843. DOI: 10.1038/27150.
[296] S. E. Woosley, N. Langer, T. A. Weaver. (1995). The presupernova evolution and explosion of helium stars that experience mass loss. Astrophysical Journal.448(1):315-338. DOI: 10.1038/27150.
[297] S. Hachinger, P. A. Mazzali, S. Taubenberger, W. Hillebrandt. et al.(2012). How much H and He is ‘hidden’ in SNe Ib/c? - I. Low-mass objects. Monthly Notices of the Royal Astronomical Society.422(1):70-88. DOI: 10.1038/27150.
[298] L. H. Frey, C. L. Fryer, P. A. Young. (2013). Can stellar mixing explain the lack of type ib supernovae in long-duration gamma-ray bursts?. Astrophysical Journal Letters.773(1, article no. L7). DOI: 10.1038/27150.
[299] A. de Ugarte Postigo, Z. Cano, D. A. Perley. (2015). GRB 150818A: spectroscopic confirmation of the SN from GTC. GRB Coordinates Network(18213). DOI: 10.1038/27150.
[300] S. Golenetskii, R. Aptekar, D. Frederiks. (2015). Konus-Wind observation of GRB 150818A. GRB Coordinates Network(18198). DOI: 10.1038/27150.
[301] S. Q. Wang, L. J. Wang, Z. G. Dai, X. F. Wu. et al.(2015). A unified energy-reservoir model containing contributions from 56Ni and neutron stars and its implication for luminous type Ic supernovae. The Astrophysical Journal.807(2):147. DOI: 10.1038/27150.
[302] A. Lien, T. Sakamoto, S. D. Barthelmy. (2016). The third swift burst alert telescope gamma-ray burst catalog. The Astrophysical Journal.829(1, article 7). DOI: 10.1038/27150.
[303] A. Pe'er, F. Ryde. Photospheric emission in gamma-ray bursts. . DOI: 10.1038/27150.
[304] D. M. Palmer, S. D. Barthelmy, J. R. Cummings. (2015). GRB 150818A: Swift-BAT refined analysis. GRB Coordinates Network(18157). DOI: 10.1038/27150.
[305] L. Nicastro, J. J. M. In't Zand, L. Amati, S. Golenetskii. et al.(2004). Multiwavelength study of the very long GRB 020410. Astronomy and Astrophysics.427(2):445-452. DOI: 10.1038/27150.
[306] N. E. Sanders, A. M. Soderberg, S. Valenti, R. J. Foley. et al.(2012). SN 2010ay is a luminous and broad-lined type ic supernova within a low-metallicity host galaxy. The Astrophysical Journal.756(2, article 184). DOI: 10.1038/27150.
[307] B. Zhang, H. Yan. (2011). The internal-collision-induced magnetic reconnection and turbulence (ICMART) model of gamma-ray bursts. The Astrophysical Journal.726, article 90. DOI: 10.1038/27150.
[308] L.-X. Li. (2007). Shock breakout in Type Ibc supernovae and application to GRB 060218/SN 2006aj. Monthly Notices of the Royal Astronomical Society.375(1):240-256. DOI: 10.1038/27150.
[309] W. Deng, H. Zhang, B. Zhang, H. Li. et al.(2016). Collision-induced magnetic reconnection and a unified interpretation of polarization properties of GRBs and blazars. Astrophysical Journal Letters.821(1, article no. L12). DOI: 10.1038/27150.
[310] A. Levan, P. Nugent, A. Fruchter, I. Burud. et al.(2005). GRB 020410: a gamma-ray burst afterglow discovered by its supernova light. Astrophysical Journal.624(2):880-888. DOI: 10.1038/27150.
[311] I. Arcavi, W. M. Wolf, D. A. Howell, L. Bildsten. et al.(2016). Rapidly rising transients in the supernova—superluminous supernova gap. Astrophysical Journal.819(1, article no. 35). DOI: 10.1038/27150.
[312] T. A. Weaver. (1976). The structure of supernova shock waves. The Astrophysical Journal Supplement Series.32:233-282. DOI: 10.1038/27150.
[313] M. Friis, D. Watson. (2013). Thermal emission in the early X-ray afterglows of gamma-ray bursts: following the prompt phase to late times. The Astrophysical Journal.771(1, article 15). DOI: 10.1038/27150.
[314] A. Pe'er, P. Mészáros, M. J. Rees. (2006). Radiation from an expanding cocoon as an explanation of the steep decay observed in GRB early afterglow light curves. Astrophysical Journal.652(1 I):482-489. DOI: 10.1038/27150.
[315] P. A. Price, E. Berger, D. E. Reichart, S. R. Kulkarni. et al.(2002). GRB 011121: a massive star progenitor. The Astrophysical Journal Letters.572(1):L51-L55. DOI: 10.1038/27150.
[316] Y. Liu, M. Modjaz, F. B. Bianco, O. Graur. et al.(2016). Analyzing the largest spectroscopic data set of stripped supernovae to improve their identifications and constrain their progenitors. The Astrophysical Journal.827(2). DOI: 10.1038/27150.
[317] G. Pignata, M. Stritzinger, A. Soderberg, P. Mazzali. et al.(2011). SN 2009bb: a peculiar broad-lined Type Ic supernova. Astrophysical Journal.728(1). DOI: 10.1038/27150.
[318] A. M. Soderberg, E. Nakar, E. Berger, S. R. Kulkarni. et al.(2006). Late-time radio observations of 68 type Ibc supernovae: strong constraints on off-axis gamma-ray bursts. Astrophysical Journal.638(2 I):930-937. DOI: 10.1038/27150.
[319] F. Taddia, J. Sollerman, G. Leloudas, M. D. Stritzinger. et al.(2015). Early-time light curves of Type Ib/c supernovae from the SDSS-II Supernova Survey. Astronomy & Astrophysics.574, article A60. DOI: 10.1038/27150.
[320] E. M. Levesque, L. J. Kewley, E. Berger, H. J. Zahid. et al.(2010). The host galaxies of gamma-ray bursts. II. A mass-metallicity relation for long-duration gamma-ray burst host galaxies. Astronomical Journal.140(5):1557-1566. DOI: 10.1038/27150.
[321] B. Paczynski. (1986). Gamma-ray bursters at cosmological distances. The Astrophysical Journal.308:L43-L46. DOI: 10.1038/27150.
[322] D. Milisavljevic, R. Margutti, J. T. Parrent, A. M. Soderberg. et al.(2015). The broad-lined type Ic SN 2012ap and the nature of relativistic supernovae lacking a gamma-ray burst detection. The Astrophysical Journal.799(1, article 51). DOI: 10.1038/27150.
[323] J. Greiner, S. Klose, M. Salvato, A. Zeh. et al.(2003). GRB 011121: a collimated outflow into wind-blown surroundings. Astrophysical Journal.599(2 I):1223-1237. DOI: 10.1038/27150.
[324] P. Mészáros, M. J. Rees. (2000). Steep slopes and preferred breaks in -ray burst spectra: the role of photospheres and comptonization. The Astrophysical Journal.530(1):292-298. DOI: 10.1038/27150.
[325] M. Sparre, R. L. C. Starling. (2012). A search for thermal X-ray signatures in gamma-ray bursts—II. The swift sample. Monthly Notices of the Royal Astronomical Society.427(4):2965-2974. DOI: 10.1038/27150.
[326] C. Thompson. (1994). A model of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society.270(3):480-498. DOI: 10.1038/27150.
[327] P. M. Garnavich, K. Z. Stanek, L. Wyrzykowski, L. Infante. et al.(2003). Discovery of the low-redshift optical afterglow of GRB 011121 and its progenitor supernova sn 2001ke. Astrophysical Journal.582(2):924-932. DOI: 10.1038/27150.
[328] R. L. C. Starling, K. L. Page, A. Pe'er, A. P. Beardmore. et al.(2012). A search for thermal X-ray signatures in gamma-ray bursts—I. Swift bursts with optical supernovae. Monthly Notices of the Royal Astronomical Society.427(4):2950-2964. DOI: 10.1038/27150.
[329] J. Gorosabel, V. Larionov, A. J. Castro-Tirado, S. Guziy. et al.(2006). Detection of optical linear polarization in the SN 2006aj/XRF 060218 non-spherical expansion. Astronomy & Astrophysics.459(3):L33-L36. DOI: 10.1038/27150.
[330] Q. E. Goddard, N. Bastian, R. C. Kennicutt. (2010). On the fraction of star clusters surviving the embedded phase. Monthly Notices of the Royal Astronomical Society.405(2):857-869. DOI: 10.1038/27150.
[331] K. Maeda. (2006). Three-dimensional simulation of gamma-ray emission from asymmetric supernovae and hypernovae. Astrophysical Journal.644(1):385-399. DOI: 10.1038/27150.
[332] S. E. Woosley, A. Heger. The light curve of the unusual supernova SN 2003dh. . DOI: 10.1038/27150.
[333] E. H. McKenzie, B. E. Schaefer. (1999). The late-time light curve of SN 1998bw associated with GRB 980425. Publications of the Astronomical Society of the Pacific.111(762):964-968. DOI: 10.1038/27150.
[334] S. B. Pandey, G. C. Anupama, R. Sagar, D. Bhattacharya. et al.(2003). The optical afterglow of the not so dark GRB 021211. Astronomy and Astrophysics.408(3):L21-L24. DOI: 10.1038/27150.
[335] L. Wang, J. C. Wheeler. (2008). Spectropolarimetry of supernovae. Annual Review of Astronomy & Astrophysics.46:433-474. DOI: 10.1038/27150.
[336] S. Akiyama, J. C. Wheeler, D. L. Meier, I. Lichtenstadt. et al.(2003). The magnetorotational instability in core-collapse supernova explosions. The Astrophysical Journal.584(2):954-970. DOI: 10.1038/27150.
[337] M. D. Valle, D. Malesani, S. Benetti, V. Testa. et al.(2003). Evidence for supernova signatures in the spectrum of the late-time bump of the optical afterglow of GRB 021211. The Astronomy and Astrophysics.406(2):L33-L37. DOI: 10.1038/27150.
[338] J. Lü, Y.-C. Zou, W.-H. Lei, B. Zhang. et al.(2012). Lorentz-factor-isotropic-luminosity/energy correlations of gamma-ray bursts and their interpretation. Astrophysical Journal.751(1, article no. 49). DOI: 10.1038/27150.
[339] J. S. Bloom, P. G. Van Dokkum, C. D. Bailyn, M. M. Buxton. et al.(2004). Optical-infrared ANDICAM observations of the transient associated with GRB 030329. Astronomical Journal.127(1):252-263. DOI: 10.1038/27150.
[340] E.-W. Liang, S.-X. Yi, J. Zhang, H.-J. Lü. et al.(2010). Constraining -ray burst initial lorentz factor with the afterglow onset feature and discovery of a tight 0-E , iso correlation. The Astrophysical Journal.725(2):2209-2224. DOI: 10.1038/27150.
[341] G. Ghirlanda, L. Nava, G. Ghisellini, A. Celotti. et al.(2012). Gamma-ray bursts in the comoving frame. Monthly Notices of the Royal Astronomical Society.420(1):483-494. DOI: 10.1038/27150.
[342] M. Tanaka, K. S. Kawabata, T. Hattori, P. A. Mazzali. et al.(2012). Three-dimensional explosion geometry of stripped-envelope core-collapse supernovae. I. Spectropolarimetric observations. The Astrophysical Journal.754(1):63. DOI: 10.1038/27150.
[343] P. A. Mazzali, J. Deng, K. Nomoto, D. N. Sauer. et al.(2006). A neutron-star-driven X-ray flash associated with supernova SN 2006aj. Nature.442(7106):1018-1020. DOI: 10.1038/27150.
[344] N. Smith, W. Li, A. V. Filippenko, R. Chornock. et al.(2011). Observed fractions of core-collapse supernova types and initial masses of their single and binary progenitor stars. Monthly Notices of the Royal Astronomical Society.412(3):1522-1538. DOI: 10.1038/27150.
[345] S. J. Smartt. (2009). Progenitors of core-collapse supernovae. Annual Review of Astronomy and Astrophysics.47:63-106. DOI: 10.1038/27150.
[346] L. E. Kay, J. P. Halpern, K. M. Leighly. (1998). Spectropolarimetry of the peculiar Type IC supernovae 1998bw and 1997ef. Bulletin of the American Astronomical Society.30, article 1323. DOI: 10.1038/27150.
[347] J. J. Eldridge, M. Fraser, S. J. Smartt, J. R. Maund. et al.(2013). The death of massive stars—II. Observational constraints on the progenitors of type Ibc supernovae. Monthly Notices of the Royal Astronomical Society.436(1):774-795. DOI: 10.1038/27150.
[348] C. T. Kowal. (1968). Absolute magnitudes of supernovae. The Astronomical Journal.73:1021-1024. DOI: 10.1038/27150.
[349] M. C. Bersten, O. G. Benvenuto, M. Orellana, K. Nomoto. et al.(2016). The unusual super-luminous supernovae SN 2011KL and asassn-15LH. Astrophysical Journal Letters.817(1, article L8). DOI: 10.1038/27150.
[350] J.-J. Wei, X.-F. Wu, F. Melia. (2015). Testing cosmological models with type Ic super luminous supernovae. Astronomical Journal.149(5, article no. 165). DOI: 10.1038/27150.
[351] M. M. Phillips. (1993). The absolute magnitudes of type IA supernovae. Astrophysical Journal.413(2):L105-L108. DOI: 10.1038/27150.
[352] C. Inserra, S. J. Smartt. (2014). Superluminous supernovae as standardizable candles and high-redshift distance probes. The Astrophysical Journal.796(2):87. DOI: 10.1038/27150.
[353] M. Betoule, R. Kessler, J. Guy. (2014). Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astronomy & Astrophysics.568, article A22. DOI: 10.1038/27150.
[354] A. M. Soderberg, S. R. Kulkarni, D. B. Fox, E. Berger. et al.(2005). An HST search for supernovae accompanying X-ray flashes. Astrophysical Journal.627(2):877-887. DOI: 10.1038/27150.
[355] D. A. Uzdensky, A. I. MacFadyen. (2007). Magnetar-driven magnetic tower as a model for gamma-ray bursts and asymmetric supernovae. Astrophysical Journal.669(1):546-560. DOI: 10.1038/27150.
[356] N. Bucciantini, E. Quataert, J. Arons, B. D. Metzger. et al.(2008). Relativistic jets and long-duration gamma-ray bursts from the birth of magnetars. Monthly Notices of the Royal Astronomical Society: Letters.383(1):L25-L29. DOI: 10.1038/27150.
[357] G. Ricker, J.-L. Atteia, N. Kawai. (2002). GRB020903(=H2314): an X-ray flash localized by HETE. GRB Coordinates Network.1530, article 1. DOI: 10.1038/27150.
[358] Y. Masada, T. Sano, H. Takabe. (2006). Nonaxisymmetric magnetorotational instability in proto-neutron stars. The Astrophysical Journal.641(1):447-457. DOI: 10.1038/27150.
[359] R. Santana, P. Crumley, R. A. Hernández, P. Kumar. et al.(2016). Monte carlo simulations of the photospheric process. Monthly Notices of the Royal Astronomical Society.456(1):1049-1065. DOI: 10.1038/27150.
[360] T. Piran. (2004). The physics of gamma-ray bursts. Reviews of Modern Physics.76(4):1143-1210. DOI: 10.1038/27150.
[361] H. Ito, J. Matsumoto, S. Nagataki, D. C. Warren. et al.(2015). Photospheric emission from collapsar jets in 3D relativistic hydrodynamics. Astrophysical Journal Letters.814(2, article no. L29). DOI: 10.1038/27150.
[362] D. Bersier, A. S. Fruchter, L.-G. Strolger, J. Gorosabel. et al.(2006). Evidence for a supernova associated with the X-ray flash 020903. Astrophysical Journal.643(1):284-291. DOI: 10.1038/27150.
[363] V. V. Uso. (1992). Millisecond pulsars with extremely strong magnetic fields as a cosmological source of -ray bursts. Nature.357(6378):472-474. DOI: 10.1038/27150.
[364] C. Lundman, A. Pe'er, F. Ryde. (2013). A theory of photospheric emission from relativistic, collimated outflows. Monthly Notices of the Royal Astronomical Society.428(3):2430-2442. DOI: 10.1038/27150.
[365] T. A. Thompson, P. Chang, E. Quataert. (2004). Magnetar spin-down, hyperenergetic supernovae, and gamma-ray bursts. Astrophysical Journal.611(1):380-393. DOI: 10.1038/27150.
[366] K. Maeda, T. Nakamura, K. Nomoto, P. A. Mazzali. et al.(2002). Explosive nucleosynthesis in aspherical hypernova explosions and late-time spectra of SN 1998bw. Astrophysical Journal.565(1):405-412. DOI: 10.1038/27150.
[367] A. Pe'er, F. Ryde. (2011). A theory of multicolor blackbody emission from relativistically expanding plasmas. The Astrophysical Journal.732(1, article 49). DOI: 10.1038/27150.
[368] E. Silva-Villa, A. Adamo, N. Bastian. (2013). A variation of the fraction of stars that form in bound clusters within M83. Monthly Notices of the Royal Astronomical Society.436:L69-L73. DOI: 10.1038/27150.
[369] J. R. Maund, J. C. Wheeler, F. Patat, D. Baade. et al.(2007). Spectropolarimetry of SN 2006aj at 9.6 days. Astronomy and Astrophysics.475(1):L1-L4. DOI: 10.1038/27150.
[370] C. Conroy, P. G. Van Dokkum. (2012). The stellar initial mass function in early-type galaxies from absorption line spectroscopy. II. Results. Astrophysical Journal.760(1, article no. 71). DOI: 10.1038/27150.
[371] P. G. van Dokkum, C. Conroy. (2010). A substantial population of low-mass stars in luminous elliptical galaxies. Nature.468(7326):940-942. DOI: 10.1038/27150.
[372] A. Sandage, G. A. Tammann. (1993). The Hubble diagram in V for supernovae of Type IA and the value of H(0) therefrom. The Astrophysical Journal.415(1):1-9. DOI: 10.1038/27150.
[373] B. D. Metzger, B. Margalit, D. Kasen, E. Quataert. et al.(2015). The diversity of transients from magnetar birth in core collapse supernovae. Monthly Notices of the Royal Astronomical Society.454(3):3311-3316. DOI: 10.1038/27150.
[374] M. Hamuy, M. M. Phillips, J. Maza, N. B. Suntzeff. et al.(1995). A hubble diagram of distant Type Ia supernovae. Astronomical Journal.109(1):1-13. DOI: 10.1038/27150.
[375] A. Gal-Yam. (2012). Luminous supernovae. Science.337(6097):927-932. DOI: 10.1038/27150.
[376] D. Malesani, G. Tagliaferri, G. Chincarini, S. Covino. et al.(2004). SN 2003lw and GRB 031203: a bright supernova for a faint gamma-ray burst. Astrophysical Journal.609(1):L5-L8. DOI: 10.1038/27150.
[377] R. Sari, T. Piran, R. Narayan. (1998). Spectra and light curves of -ray burst afterglows. The Astrophysical Journal.497(1):L17-L20. DOI: 10.1038/27150.
[378] C. Fransson, R. A. Chevalier. (1987). Late emission from SN 1987A. The Astrophysical Journal.322(1):L15-L20. DOI: 10.1038/27150.
[379] A. M. Soderberg, S. R. Kulkarni, E. Berger, D. W. Fox. et al.(2004). The sub-energetic -ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425. Nature.430(7000):648-650. DOI: 10.1038/27150.
[380] S. Taubenberger, S. Valenti, S. Benetti, E. Cappellaro. et al.(2009). Nebular emission-line profiles of Type Ib/c supernovae—probing the ejecta asphericity. Monthly Notices of the Royal Astronomical Society.397(2):677-694. DOI: 10.1038/27150.
[381] A. Gal-Yam, D.-S. Moon, D. B. Fox, A. M. Soderberg. et al.(2004). The J-band light curve of SN 20031w, associated with GRB 031203. Astrophysical Journal.609(2):L59-L62. DOI: 10.1038/27150.
[382] D. Milisavljevic, R. A. Fesen, C. L. Gerardy, R. P. Kirshner. et al.(2010). Doublets and double peaks: late-time [O I] 6300, 6364 line profiles of stripped-envelope, core-collapse supernovae. The Astrophysical Journal.709(2):1343-1355. DOI: 10.1038/27150.
[383] B. D. Metzger, D. Giannios, T. A. Thompson, N. Bucciantini. et al.(2011). The protomagnetar model for gamma-ray bursts. Monthly Notices of the Royal Astronomical Society.413(3):2031-2056. DOI: 10.1038/27150.
[384] F. Hammer, H. Flores, D. Schaerer, M. Dessauges-Zavadsky. et al.(2006). Detection of Wolf-Rayet stars in host galaxies of gamma-ray bursts (GRBs): are GRBs produced by runaway massive stars ejected from high stellar density regions?. Astronomy and Astrophysics.454(1):103-111. DOI: 10.1038/27150.
[385] M. J. Rees, P. Mészáros. (1994). Unsteady outflow models for cosmological -ray bursts. The Astrophysical Journal.430(2):L93-L96. DOI: 10.1038/27150.
[386] P. Mészáros. (2001). Gamma-ray bursts: accumulating afterglow implications, progenitor clues, and prospects. Science.291(5501):79-84. DOI: 10.1038/27150.
[387] N. Yadav, D. Mukherjee, P. Sharma, B. B. Nath. et al.Supernovae under microscope: how supernovae overlap to form superbubbles. . DOI: 10.1038/27150.
[388] Z. Cano, K. G. Johansson Andreas, K. Maeda. (2016). A self-consistent analytical magnetar model: the luminosity of -ray burst supernovae is powered by radioactivity. Monthly Notices of the Royal Astronomical Society.457(3):2761-2772. DOI: 10.1038/27150.
[389] D. Branch, G. A. Tammann. (1992). Type IA supernovae as standard candles. Annual Review of Astronomy & Astrophysics.30:359-389. DOI: 10.1038/27150.
[390] J. J. Eldridge, N. Langer, C. A. Tout. (2011). Runaway stars as progenitors of supernovae and gamma-ray bursts. Monthly Notices of the Royal Astronomical Society.414(4):3501-3520. DOI: 10.1038/27150.
[391] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti. et al.(1998). Observational evidence from supernovae for an accelerating universe and a cosmological constant. The Astronomical Journal.116(3):1009-1038. DOI: 10.1038/27150.
[392] G. Ghirlanda. Gamma Ray Bursts Spectral-Energy correlations: recent results. .275:344-348. DOI: 10.1038/27150.
[393] J. P. U. Fynbo, J. Sollerman, J. Hjorth, F. Grundahl. et al.(2004). On the afterglow of the X-ray flash of 2003 July 23: photometric evidence for an off-axis gamma-ray burst with an associated supernova?. Astrophysical Journal.609(2):962-971. DOI: 10.1038/27150.
[394] T. Morris, P. Podsiadlowski. (2007). The triple-ring nebula around SN 1987A: fingerprint of a binary merger. Science.315(5815):1103-1106. DOI: 10.1038/27150.
[395] H.-N. He, R.-Y. Liu, X.-Y. Wang, S. Nagataki. et al.(2012). Icecube nondetection of gamma-ray bursts: constraints on the fireball properties. Astrophysical Journal.752, article 29. DOI: 10.1038/27150.
[396] Y. M. Lipkin, E. O. Ofek, A. Gal-Yam, E. M. Leibowitz. et al.(2004). The detailed optical light curve of GRB 030329. Astrophysical Journal.606(1):381-394. DOI: 10.1038/27150.
[397] A. M. Khokhlov, P. A. Höflich, E. S. Oran, J. C. Wheeler. et al.(1999). Jet-induced explosions of core collapse supernovae. Astrophysical Journal.524(2):L107-L110. DOI: 10.1038/27150.
[398] N. Tominaga, J. Deng, P. A. Mazzali, K. Maeda. et al.(2004). Supernova light-curve models for the bump in the optical counterpart of X-ray flash 030723. Astrophysical Journal.612(2):L105-L108. DOI: 10.1038/27150.
[399] K. Maeda, K. Nomoto. (2003). Bipolar supernova explosions: nucleosynthesis and implications for abundances in extremely metal-poor stars. The Astrophysical Journal.598(2):1163-1200. DOI: 10.1038/27150.
[400] E. M. Schlegel, R. P. Kirshner. (1989). The type Ib supernova 1984L in NGC 991. Astronomical Journal.98:577-589. DOI: 10.1038/27150.
[401] S. Hümmer, P. Baerwald, W. Winter. (2012). Neutrino emission from gamma-ray burst fireballs, revised. Physical Review Letters.108(23). DOI: 10.1038/27150.
[402] P. A. Crowther, O. Schnurr, R. Hirschi, N. Yusof. et al.(2010). The R136 star cluster hosts several stars whose individual masses greatly exceed the accepted 150 M. stellar mass limit. Monthly Notices of the Royal Astronomical Society.408(2):731-751. DOI: 10.1038/27150.
[403] G. Pugliese, P. Møller, J. Gorosabel, B. L. Jensen. et al.(2005). The red optical afterglow of GRB 030725. Astronomy and Astrophysics.439(2):527-532. DOI: 10.1038/27150.
[404] Z. Li. (2012). Note on the normalization of predicted gamma-ray burst neutrino flux. Physical Review D.85(2). DOI: 10.1038/27150.
[405] C. J. Burrows, J. Krist, J. J. Hester, R. Sahai. et al.(1995). Hubble space telescope observations of the SN 1987A triple ring nebula. The Astrophysical Journal.452(2):680. DOI: 10.1038/27150.
[406] P. Podsiadlowski, P. C. Joss, J. J. L. Hsu. (1992). Presupernova evolution in massive interacting binaries. Astrophysical Journal.391(1):246-264. DOI: 10.1038/27150.
[407] R. Preece, A. Goldstein, N. Bhat. (2016). Which E peak?-the characteristic energy of gamma-ray burst spectra. The Astrophysical Journal.821(1, article 12). DOI: 10.1038/27150.
[408] M. Hamuy, M. M. Phillips, N. B. Suntzeff, R. A. Schommer. et al.(1996). The hubble diagram of the calan/tololo type IA supernovae and the value of HO. Astronomical Journal.112(6):2398. DOI: 10.1038/27150.
[409] A. C. Collazzi, B. E. Schaefer, A. Goldstein, R. D. Preece. et al.(2012). A significant problem with using the Amati relation for cosmological purposes. The Astrophysical Journal.747(1, article 39). DOI: 10.1038/27150.
[410] M. Hamuy, M. M. Phillips, N. B. Suntzeff, R. A. Schommer. et al.(1996). The absolute luminosities of the calan/tololo type IA supernovae. Astronomical Journal.112(6):2391-2397. DOI: 10.1038/27150.
[411] P. A. Crowther, S. M. Caballero-Nieves, K. A. Bostroem, J. Maíz Apellániz. et al.(2016). The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He II 1640 in young star clusters. Monthly Notices of the Royal Astronomical Society.458(1):624-659. DOI: 10.1038/27150.
[412] W. L. Freedman, B. F. Madore, B. K. Gibson, L. Ferrarese. et al.(2001). Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophysical Journal Letters.553(1):47-72. DOI: 10.1038/27150.
[413] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop. et al.(1999). Measurements of Ω and Λ from 42 high-redshift supernovae. The Astrophysical Journal.517(2):565-586. DOI: 10.1038/27150.
[414] J. P. Ostriker, J. E. Gunn. (1971). Do pulsars make supernovae?. The Astrophysical Journal.164:L95-L104. DOI: 10.1038/27150.
[415] B. W. Grefenstette, F. A. Harrison, S. E. Boggs, S. P. Reynolds. et al.(2014). Asymmetries in core-collapse supernovae from maps of radioactive Ti in Cassiopeia A. Nature.506(7488):339-342. DOI: 10.1038/27150.
[416] A. de Ugarte Postigo, C. C. Thoene, J. Gorosabel. (2012). GRB 111211A: detection of the SN with the 10.4m GTC. GRB Coordinates Network(12802). DOI: 10.1038/27150.
[417] J. M. Blondin, A. Mezzacappa, C. Demarino. (2003). Stability of standing accretion shocks, with an eye toward core-collapse supernovae. Astrophysical Journal.584(2 I):971-980. DOI: 10.1038/27150.
[418] M. Sparre, J. Sollerman, J. P. U. Fynbo, D. Malesani. et al.(2011). Spectroscopic evidence for SN 2010ma associated with GRB 101219B. The Astrophysical Journal Letters.735(1):L24. DOI: 10.1038/27150.
[419] S. Orlando, M. Miceli, M. L. Pumo, F. Bocchino. et al.(2016). Modeling SNR cassiopeia a from the supernova explosion to its current age: the role of post-explosion anisotropies of Ejecta. Astrophysical Journal.822(1, article 22). DOI: 10.1038/27150.
[420] S. Golenetskii, R. Aptekar, E. Mazets. (2011). Konus-wind observation of GRB 111209A. GRB Coordinates Network(12663). DOI: 10.1038/27150.
[421] K. Maeda, K. Kawabata, P. A. Mazzali, M. Tanaka. et al.(2008). Asphericity in supernova explosions from late-time spectroscopy. Science.319(5867):1220-1223. DOI: 10.1038/27150.
[422] B. D. Metzger, T. A. Thompson, E. Quataert. (2007). Proto-neutron star winds with magnetic fields and rotation. The Astrophysical Journal.659(1 I):561-579. DOI: 10.1038/27150.
[423] A. De Ugarte Postigo, C. C. Thöne, P. Goldoni, J. P. U. Fynbo. et al.(2011). Time resolved spectroscopy of GRB 100418A and its host galaxy with X-shooter. Astronomische Nachrichten.332(3):297-298. DOI: 10.1038/27150.
[424] A. L. Piro, E. Nakar. (2013). What can we learn from the rising light curves of radioactively powered supernovae?. The Astrophysical Journal.769(1, article 67). DOI: 10.1038/27150.
[425] X. Li, J. Hjorth, R. Wojtak. (2014). Cosmological parameters from supernovae associated with gamma-ray bursts. The Astrophysical Journal.796(1, article L4). DOI: 10.1038/27150.
[426] D. Kasen, S. E. Woosley. (2007). On the origin of the type Ia supernova width-luminosity relation. The Astrophysical Journal.656(2):661-665. DOI: 10.1038/27150.
[427] S. E. Woosley, W. Zhang. (2007). Models for GRBs and diverse transients. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.365(1854):1129-1139. DOI: 10.1038/27150.
[428] R. A. Fesen. (2001). An optical survey of outlying ejecta in Cassiopeia A: evidence for a turbulent, asymmetric explosion. The Astrophysical Journal, Supplement Series.133(1):161-186. DOI: 10.1038/27150.
[429] J. C. Wheeler, J. R. Maund, S. M. Couch. (2008). The shape of Cas A. The Astrophysical Journal.677(2):1091-1099. DOI: 10.1038/27150.
[430] L. A. Lopez, E. Ramirez-Ruiz, D. Castro, S. Pearson. et al.(2013). The galactic supernova remnant W49B likely originates from a jet-driven, core-collapse explosion. The Astrophysical Journal.764(1):50. DOI: 10.1038/27150.
[431] P. D'Avanzo, A. Melandri, E. Palazzi. (2012). GRB 111228A: possible detection of the SN with the TNG. GRB Coordinates Network(13069). DOI: 10.1038/27150.
[432] R. A. Fesen, D. Milisavljevic. (2016). An HST survey of the highest-velocity Ejecta in cassiopeia A. Astrophysical Journal.818(1, article 17). DOI: 10.1038/27150.
[433] A. Melandri, E. Pian, P. Ferrero, V. D'Elia. et al.(2012). The optical SN 2012bz associated with the long GRB 120422A. Astronomy and Astrophysics.547, article no. A82. DOI: 10.1038/27150.
[434] S. Klose, J. Greiner, J. Fynbo. (2012). Supernova 2012eb = GRB 120714B. Central Bureau Electronic Telegrams(3200). DOI: 10.1038/27150.
[435] C. Inserra, S. J. Smartt, A. Jerkstrand, S. Valenti. et al.(2013). Super-luminous type Ic supernovae: catching a magnetar by the tail. The Astrophysical Journal.770(2):128. DOI: 10.1038/27150.
[436] B. Zhang, P. Mészáros. (2001). Gamma-ray burst afterglow with continuous energy injection: signature of a highly magnetized millisecond pulsar. Astrophysical Journal.552(1):L35-L38. DOI: 10.1038/27150.
[437] S. Savaglio, K. Glazebrook, D. Le Borgne. (2009). The galaxy population hosting gamma-ray bursts. The Astrophysical Journal.691(1):182-211. DOI: 10.1038/27150.
[438] E. Chatzopoulos, J. C. Wheeler, J. Vinko, R. Quimby. et al.(2011). SN 2008am: a super-luminous type IIn supernova. The Astrophysical Journal.729, article 143. DOI: 10.1038/27150.
[439] P. Jakobsson, D. Malesani, J. Hjorth, J. P. U. Fynbo. et al.Host galaxies of long gamma-ray bursts. :265-270. DOI: 10.1038/27150.
[440] T. Krühler, D. Malesani, J. P. U. Fynbo, O. E. Hartoog. et al.(2015). GRB hosts through cosmic time: VLT/X-shooter emission-line spectroscopy of 96 -ray-burst-selected galaxies at. The Astronomy and Astrophysics.581, article A125. DOI: 10.1038/27150.
[441] E. M. Levesque. (2014). The host galaxies of long-duration gamma-ray bursts. Publications of the Astronomical Society of the Pacific.126(935):1-14. DOI: 10.1038/27150.
[442] P. Mösta, C. D. Ott, D. Radice, L. F. Roberts. et al.(2015). A large-scale dynamo and magnetoturbulence in rapidly rotating core-collapse supernovae. Nature.528(7582):376-379. DOI: 10.1038/27150.
[443] S. E. Woosley. (1993). Gamma-ray bursts from stellar mass accretion disks around black holes. The Astrophysical Journal.405(1):273-277. DOI: 10.1038/27150.
[444] E. Berger, R. Chornock, T. R. Holmes, R. J. Foley. et al.(2011). The spectroscopic classification and explosion properties of SN 2009nz associated with GRB 091127 AT = 0.490. Astrophysical Journal.743(2, article 204). DOI: 10.1038/27150.
[445] B. E. Cobb, J. S. Bloom, D. A. Perley, A. N. Morgan. et al.(2010). Discovery of sn 2009nz associated with grb 091127. Astrophysical Journal Letters.718(2):L150-L155. DOI: 10.1038/27150.
[446] S. M. Couch, E. P. O'Connor. (2014). High-resolution three-dimensional simulations of core-collapse supernovae in multiple progenitors. The Astrophysical Journal.785(2):123. DOI: 10.1038/27150.
[447] M. Nicholl, S. J. Smartt, A. Jerkstrand. (2013). Slowly fading super-luminous supernovae that are not pair-instability explosions. Nature.502:346-349. DOI: 10.1038/27150.
[448] E. F. Olivares, J. Greiner, P. Schady, S. Klose. et al.(2015). Multiwavelength analysis of three supernovae associated with gamma-ray bursts observed by GROND. Astronomy & Astrophysics.577, article A44. DOI: 10.1038/27150.
[449] O. Papish, N. Soker. (2011). Exploding core collapse supernovae with jittering jets. Monthly Notices of the Royal Astronomical Society.416(3):1697-1702. DOI: 10.1038/27150.
[450] D. Kasen, L. Bildsten. (2010). Supernova light curves powered by young magnetars. Astrophysical Journal.717(1):245-249. DOI: 10.1038/27150.
[451] P. A. Mazzali, M. Sullivan, E. Pian, J. Greiner. et al.(2016). Spectrum formation in superluminous supernovae (Type I). Monthly Notices of the Royal Astronomical Society.458(4):3455-3465. DOI: 10.1038/27150.
[452] S. E. Woosley. (2010). Bright supernovae from magnetar birth. Astrophysical Journal Letters.719(2):L204-L207. DOI: 10.1038/27150.
[453] D. W. Hogg, A. S. Fruchter. (1999). The faint-galaxy hosts of gamma-ray bursts. Astrophysical Journal.520(1):54-58. DOI: 10.1038/27150.
[454] S. G. Djorgovski, D. A. Frail, S. R. Kulkarni, J. S. Bloom. et al.(2001). The afterglow and the host galaxy of the dark burst GRB 970828. The Astrophysical Journal.562(2):654-663. DOI: 10.1038/27150.
[455] S. M. Couch, C. D. Ott. (2015). The role of turbulence in neutrino-driven core-collapse supernova explosions. The Astrophysical Journal.799(1, article 5). DOI: 10.1038/27150.
[456] L. Wang, D. Baade, P. Höflich, J. C. Wheeler. et al.(2003). Spectropolarimetry of the type Ic supernova SN 2002ap in M74: more evidence for asymmetric core collapse. Astrophysical Journal.592(1):457-466. DOI: 10.1038/27150.
[457] S. Mao, H. J. Mo. (1998). The nature of the host galaxies for gamma-ray bursts. Astronomy and Astrophysics.339(1):L1-L4. DOI: 10.1038/27150.
[458] S. T. Holland, F. E. Marshall, M. Page, M. de Pasquale. et al.(2010). GRB 100418A: possible evidence for a supernova. GRB Coordinates Network(10661). DOI: 10.1038/27150.
[459] F. E. Marshall, L. A. Antonelli, D. N. Burrows, S. Covino. et al.(2011). The late peaking afterglow of GRB 100418A. Astrophysical Journal.727(2). DOI: 10.1038/27150.
[460] R. Chornock, E. Berger, E. M. Levesque. Spectroscopic discovery of the broad-lined type Ic supernova 2010bh associated with the low-redshift GRB 100316D. . DOI: 10.1038/27150.
[461] A. G. Lyne, D. R. Lorimer. (1994). High birth velocities of radio pulsars. Nature.369(6476):127-129. DOI: 10.1038/27150.
[462] P. A. Mazzali, K. S. Kawabata, K. Maeda, K. Nomoto. et al.(2005). An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts. Science.308(5726):1284-1287. DOI: 10.1038/27150.
[463] S. G. Djorgovski, J. S. Bloom, S. R. Kulkarni. (2003). The redshift and the host galaxy of GRB 980613: a gamma-ray burst from a merger-induced starburst?. Astrophysical Journal.591(1):L13-L16. DOI: 10.1038/27150.
[464] M. Modjaz, R. P. Kirshner, S. Blondin, P. Challis. et al.(2008). Double-peaked oxygen lines are not rare in nebular spectra of core-collapse Supernovae. The Astrophysical Journal Letters.687:L9-L12. DOI: 10.1038/27150.
[465] M. Tanaka, N. Tominaga, K. Nomoto, S. Valenti. et al.(2009). Type Ib supernova 2008D associated with the luminous X-ray transient 080109: an energetic explosion of a massive helium star. The Astrophysical Journal.692(2):1131-1142. DOI: 10.1038/27150.
[466] N. R. Tanvir, E. Rol, A. J. Levan, K. Svensson. et al.(2010). Late-time observations of GRB 080319B: jet break, host galaxy, and accompanying supernova. The Astrophysical Journal.725(1):625-632. DOI: 10.1038/27150.
[467] A. I. Macfadyen, S. E. Woosley, A. Heger. (2001). Supernovae, jets, and collapsars. Astrophysical Journal.550(1):410-425. DOI: 10.1038/27150.
[468] K. Maeda, N. Tominaga. (2009). Nucleosynthesis of 56Ni in wind-driven supernova explosions and constraints on the central engine of gamma-ray bursts. Monthly Notices of the Royal Astronomical Society.394(3):1317-1324. DOI: 10.1038/27150.
[469] W. D. Arnett. (1982). Type I supernovae. I—analytic solutions for the early part of the light curve. The Astrophysical Journal.253:785-797. DOI: 10.1038/27150.
[470] Z. Liu, X.-L. Zhao, F. Huang, X.-F. Wang. et al.(2015). Optical observations of the broad-lined type Ic supernova SN 2012ap. Research in Astronomy and Astrophysics.15(2, article 007):225-236. DOI: 10.1038/27150.
[471] J. S. Bloom, D. A. Perley, W. Li, N. R. Butler. et al.(2009). Observations of the naked-eye GRB 080319B: implications of nature's brightest explosion. Astrophysical Journal.691(1):723-737. DOI: 10.1038/27150.
[472] D. A. Kann, S. Schulze, A. C. Updike. (2008). GRB 080319B: jet break, energetics, supernova. GRB Coordinates Network(7627). DOI: 10.1038/27150.
[473] M. Della Valle, S. Benetti, P. Mazzali. (2008). Supernova 2008hw and GRB 081007. Central Bureau Electronic Telegrams(1602). DOI: 10.1038/27150.
[474] Z.-P. Jin, S. Covino, M. Della Valle, P. Ferrero. et al.(2013). GRB 081007 and GRB 090424: the surrounding medium, outflows, and supernovae. The Astrophysical Journal.774(2):114. DOI: 10.1038/27150.
[475] C. L. Fryer, P. A. Mazzali, J. Prochaska, E. Cappellaro. et al.(2007). Constraints on Type Ib/c supernovae and gamma-ray burst progenitors. Publications of the Astronomical Society of the Pacific.119(861):1211-1232. DOI: 10.1038/27150.
[476] K. Takaki, K. S. Kawabata, M. Yamanaka, K. Maeda. et al.(2013). A luminous and fast-expanding type Ib supernova SN 2012au. Astrophysical Journal Letters.772(2, article no. L17). DOI: 10.1038/27150.
[477] S. E. Woosley, T. A. Weaver. (1986). The physics of supernova explosions. Annual Review of Astronomy & Astrophysics.24:205-253. DOI: 10.1038/27150.
[478] A. Soderberg, E. Berger, D. Fox. (2008). GRB 081007: detection of a supernova. GRB Coordinates Network(8662). DOI: 10.1038/27150.
[479] E. Berger, D. B. Fox, A. Cucchiara, S. B. Cenko. et al.(2008). GRB 081007: Gemini-south redshift. GRB Coordinates Network(8335). DOI: 10.1038/27150.
[480] N. R. Butler, D. Kocevski. (2007). X-ray hardness evolution in GRB afterglows and flares: late-time GRB activity without NH variations. Astrophysical Journal.663(1):407-419. DOI: 10.1038/27150.
[481] R. P. Harkness, J. C. Wheeler, B. Margon, R. A. Downes. et al.(1987). The early spectral phase of type Ib supernovae—evidence for helium. The Astrophysical Journal.317:355-367. DOI: 10.1038/27150.
[482] Z. Cano, K. Maeda, S. Schulze. (2014). Type Ib SN 1999dn as an example of the thoroughly mixed ejecta of Ib supernovae. Monthly Notices of the Royal Astronomical Society.438(4):2924-2937. DOI: 10.1038/27150.
[483] S. Gezari, D. O. Jones, N. E. Sanders, A. M. Soderberg. et al.(2015). Galex detection of shock breakout in type IIP supernova PS1-13arp: implications for the progenitor star wind. The Astrophysical Journal.804(1):28. DOI: 10.1038/27150.
[484] D. Grupe, C. Gronwall, X.-Y. Wang, P. W. A. Roming. et al.(2007). SWIFT and observations of the extraordinary gamma-ray burst 060729: more than 125 days of X-ray afterglow. Astrophysical Journal.662(1 I):443-458. DOI: 10.1038/27150.
[485] K. Misra, A. S. Fruchter, P. Nugent. Late‐time HST observations of XRF 060218/SN 2006aj. .1358:299-302. DOI: 10.1038/27150.
[486] J. C. Wheeler, V. Johnson, A. Clocchiatti. (2015). Analysis of late-time light curves of type IIb, Ib and Ic supernovae. Monthly Notices of the Royal Astronomical Society.450(2):1295-1307. DOI: 10.1038/27150.
[487] R. Barniol Duran, E. Nakar, T. Piran, R. Sari. et al.(2015). The afterglow of a relativistic shock breakout and low-luminosity GRBs. Monthly Notices of the Royal Astronomical Society.448:417-428. DOI: 10.1038/27150.
[488] M. Milosavljević, C. C. Lindner, R. Shen, P. Kumar. et al.(2012). Supernovae powered by collapsar accretion in gamma-ray burst sources. Astrophysical Journal.744(2, article no. 103). DOI: 10.1038/27150.
[489] K. Schawinski, S. Justham, C. Wolf, P. Podsiadlowski. et al.(2008). Supernova shock breakout from a red supergiant. Science.321(5886):223-226. DOI: 10.1038/27150.
[490] J. Sollerman, S. T. Holland, P. Challis, C. Fransson. et al.(2002). Supernova 1998bw—the final phases. Astronomy and Astrophysics.386(3):944-956. DOI: 10.1038/27150.
[491] A. I. MacFadyen, S. E. Woosley. (1999). Collapsars: gamma-ray bursts and explosions in ‘failed supernovae’. The Astrophysical Journal.524(1):262-289. DOI: 10.1038/27150.
[492] J. Sollerman, A. O. Jaunsen, J. P. U. Fynbo, J. Hjorth. et al.(2006). Supernova 2006aj and the associated X-Ray Flash 060218. Astronomy and Astrophysics.454(2):503-509. DOI: 10.1038/27150.
[493] J. Hill, P. Garnavich, O. Kuhn. (2007). GRB 070419A, deep LBT photometry and possible supernova detection. GRB Coordinates Network(6486). DOI: 10.1038/27150.
[494] C. Li, D. J. Hillier, L. Dessart. (2012). Non-thermal excitation and ionization in supernovae. Monthly Notices of the Royal Astronomical Society.426(2):1671-1686. DOI: 10.1038/27150.
[495] S. B. Cenko, S. Gezari, T. Small, D. B. Fox. et al.(2007). GRB 070419: Keck/LRIS absorption redshift. GRB Coordinates Network(6322). DOI: 10.1038/27150.
[496] H. Li, R. McCray. (1995). The He I emission lines of SN 1987A. The Astrophysical Journal.441:821-829. DOI: 10.1038/27150.
[497] Y. Suwa, N. Tominaga. (2015). How much can Ni be synthesized by the magnetar model for long gamma-ray bursts and hypernovae?. Monthly Notices of the Royal Astronomical Society.451(1):282-287. DOI: 10.1038/27150.
[498] L. B. Lucy. (1991). Nonthermal excitation of helium in type Ib supernovae. The Astrophysical Journal.383(1):308-313. DOI: 10.1038/27150.
[499] M. V. Barkov, S. S. Komissarov. (2011). Recycling of neutron stars in common envelopes and hypernova explosions. Monthly Notices of the Royal Astronomical Society.415(1):944-958. DOI: 10.1038/27150.
[500] T. A. Thompson. (2007). Assessing millisecond proto-magnetars as GRB central engines. Revista Mexicana de Astronomia y Astrofisica.27:80-90. DOI: 10.1038/27150.
[501] T. A. Thompson, B. D. Metzger, N. Bucciantini. Proto-magnetars as GRB central engines: uncertainties, limitations, & particulars. .1279:81-88. DOI: 10.1038/27150.
[502] C. Markwardt, L. Barbier, S. D. Barthelmy. (2006). GRB 060904B: Swift-BAT refined analysis. GRB Coordinates Network(5520). DOI: 10.1038/27150.
文献评价指标
浏览 328次
下载全文 51次
评分次数 0次
用户评分 0.0分
分享 17次