首页 » 文章 » 文章详细信息
Mediators of Inflammation Volume 2017 ,2017-03-14
Roles of Dietary Amino Acids and Their Metabolites in Pathogenesis of Inflammatory Bowel Disease
Review Article
Xianying Bao 1 , 2 , 3 , 4 Zemeng Feng 2 , 3 , 4 , 5 Jiming Yao 6 Tiejun Li 1 , 2 , 3 , 4 , 5 Yulong Yin 1 , 2 , 3 , 4
Show affiliations
DOI:10.1155/2017/6869259
Received 2016-09-20, accepted for publication 2017-02-22, Published 2017-02-22
PDF
摘要

Inflammatory Bowel Disease (IBD) is a kind of chronic inflammation, which has increasing incidence and prevalence in recent years. IBD mainly divides into Crohn’s disease (CD) and ulcerative colitis (UC). It is hard to cure IBD completely, and novel therapies are urgently needed. Amino acids (AAs) and their metabolites are regarded as important nutrients for humans and animals and also play an important role in IBD amelioration. In the present study, the potential protective effects of AAs and their metabolites on IBD had been summarized with the objective to provide insights into IBD moderating using dietary AAs and their metabolites as a potential adjuvant therapy.

授权许可

Copyright © 2017 Xianying Bao et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Zemeng Feng.Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China, cas.cn;National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan 410125, China;Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China, moa.gov.cn;Hunan Co-Innovation Center of Animal Production Safety, CICAPS, Changsha 410128, China.zemengfeng2006@163.com
2. Yulong Yin.College of Animal Science and Technology, Hunan Agriculture University, Changsha, Hunan 410128, China, hunau.edu.cn;Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan 410125, China, cas.cn;National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan 410125, China;Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Changsha, Hunan 410125, China, moa.gov.cn.yinyulong@isa.ac.cn

推荐引用方式

Xianying Bao,Zemeng Feng,Jiming Yao,Tiejun Li,Yulong Yin. Roles of Dietary Amino Acids and Their Metabolites in Pathogenesis of Inflammatory Bowel Disease. Mediators of Inflammation ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
1

是否收藏?

参考文献
[1] Y. Mine, H. Zhang. (2015). Calcium-sensing receptor (CaSR)-mediated anti-inflammatory effects of L-amino acids in intestinal epithelial cells. Journal of Agricultural and Food Chemistry.63(45):9987-9995. DOI: 10.1016/j.imlet.2014.04.004.
[2] S. V. Generoso, N. M. Rodrigues, L. M. Trindade, N. C. Paiva. et al.(2015). Dietary supplementation with omega-3 fatty acid attenuates 5-fluorouracil induced mucositis in mice. Lipids in Health and Disease.14(1, article 54). DOI: 10.1016/j.imlet.2014.04.004.
[3] T. Hisamatsu, S. Okamoto, M. Hashimoto, T. Muramatsu. et al.(2012). Novel, objective, multivariate biomarkers composed of plasma amino acid profiles for the diagnosis and assessment of inflammatory bowel disease. PLoS ONE.7(1). DOI: 10.1016/j.imlet.2014.04.004.
[4] S. Mozaffari, M. Abdollahi. (2011). Melatonin, a promising supplement in inflammatory bowel disease: a comprehensive review of evidences. Current Pharmaceutical Design.17(38):4372-4378. DOI: 10.1016/j.imlet.2014.04.004.
[5] C. J. Kim, J. A. Kovacs-Nolan, C. Yang, T. Archbold. et al.(2010). L-Tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulfate (DSS)-induced colitis. Journal of Nutritional Biochemistry.21(6):468-475. DOI: 10.1016/j.imlet.2014.04.004.
[6] S.-K. S. Hong, B. E. Maltz, L. A. Coburn, J. C. Slaughter. et al.(2010). Increased serum levels of L-arginine in ulcerative colitis and correlation with disease severity. Inflammatory Bowel Diseases.16(1):105-111. DOI: 10.1016/j.imlet.2014.04.004.
[7] H. Shamran, N. P. Singh, E. E. Zumbrun, A. Murphy. et al.(2016). Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation. Brain, Behavior, and Immunity.59:10-20. DOI: 10.1016/j.imlet.2014.04.004.
[8] M. Sałaga, A. Mokrowiecka, P. K. Zakrzewski, A. Cygankiewicz. et al.(2014). Experimental colitis in mice is attenuated by changes in the levels of endocannabinoid metabolites induced by selective inhibition of fatty acid amide hydrolase (FAAH). Journal of Crohn's and Colitis.8(9):998-1009. DOI: 10.1016/j.imlet.2014.04.004.
[9] I. Soufli, R. Toumi, H. Rafa, C. Touil-Boukoffa. et al.(2016). Overview of cytokines and nitric oxide involvement in immuno-pathogenesis of inflammatory bowel diseases. World Journal of Gastrointestinal Pharmacology and Therapeutics.7(3):353-360. DOI: 10.1016/j.imlet.2014.04.004.
[10] N. P. Zwintscher, P. M. Shah, S. K. Salgar, C. R. Newton. et al.(2016). Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model. Annals of Medicine and Surgery.7:97-103. DOI: 10.1016/j.imlet.2014.04.004.
[11] H. S. Farghaly, R. H. Thabit. (2014). l-arginine and aminoguanidine reduce colonic damage of acetic acid-induced colitis in rats: potential modulation of nuclear factor-B/p65. Clinical and Experimental Pharmacology and Physiology.41(10):769-779. DOI: 10.1016/j.imlet.2014.04.004.
[12] D. Corridoni, K. O. Arseneau, F. Cominelli. (2014). Inflammatory bowel disease. Immunology Letters.161(2):231-235. DOI: 10.1016/j.imlet.2014.04.004.
[13] K. Yao, J. Fang, Y.-L. Yin, Z.-M. Feng. et al.(2011). Tryptophan metabolism in animals: important roles in nutrition and health. Frontiers in Bioscience (Scholar Edition).3(1):286-297. DOI: 10.1016/j.imlet.2014.04.004.
[14] H. G. Sayyed, R. J. Jaumdally, N. K. Idriss, D. A. El Sers. et al.(2013). The effect of melatonin on plasma markers of inflammation and on expression of nuclear factor-kappa beta in acetic acid-induced colitis in the rat. Digestive Diseases and Sciences.58(11):3156-3164. DOI: 10.1016/j.imlet.2014.04.004.
[15] P. C. Konturek, G. Burnat, T. Brzozowski, Y. Zopf. et al.(2008). Tryptophan free diet delays healing of chronic gastric ulcers in rat. Journal of Physiology and Pharmacology.59(2):53-65. DOI: 10.1016/j.imlet.2014.04.004.
[16] K. Celinski, P. C. Konturek, S. J. Konturek, M. Slomka. et al.(2011). Effects of melatonin and tryptophan on healing of gastric and duodenal ulcers with Helicobacter pylori infection in humans. Journal of Physiology and Pharmacology.62(5):521-526. DOI: 10.1016/j.imlet.2014.04.004.
[17] T.-T. Li, J.-F. Zhang, S.-J. Fei, S.-P. Zhu. et al.(2014). Glutamate microinjection into the hypothalamic paraventricular nucleus attenuates ulcerative colitis in rats. Acta Pharmacologica Sinica.35(2):185-194. DOI: 10.1016/j.imlet.2014.04.004.
[18] Y.-C. Hou, J.-M. Wu, M.-Y. Wang, M.-H. Wu. et al.(2014). Glutamine supplementation attenuates expressions of adhesion molecules and chemokine receptors on T cells in a murine model of acute colitis. Mediators of Inflammation.2014-14. DOI: 10.1016/j.imlet.2014.04.004.
[19] F. Söderquist, P. M. Hellström, J. L. Cunningham. (2015). Human gastroenteropancreatic expression of melatonin and its receptors MT1 and MT2. PLoS ONE.10(3). DOI: 10.1016/j.imlet.2014.04.004.
[20] M. E. Himmel, G. Hardenberg, C. A. Piccirillo, T. S. Steiner. et al.(2008). The role of T-regulatory cells and Toll-like receptors in the pathogenesis of human inflammatory bowel disease. Immunology.125(2):145-153. DOI: 10.1016/j.imlet.2014.04.004.
[21] T. Asahi, X. Wu, H. Shimoda, S. Hisaka. et al.(2016). A mushroom-derived amino acid, ergothioneine, is a potential inhibitor of inflammation-related DNA halogenation. Bioscience, Biotechnology and Biochemistry.80(2):313-317. DOI: 10.1016/j.imlet.2014.04.004.
[22] H. Zhang, C.-A. A. Hu, J. Kovacs-Nolan, Y. Mine. et al.(2015). Bioactive dietary peptides and amino acids in inflammatory bowel disease. Amino Acids.47(10):2127-2141. DOI: 10.1016/j.imlet.2014.04.004.
[23] I. K. Cheah, B. Halliwell. (2012). Ergothioneine; antioxidant potential, physiological function and role in disease. Biochimica et Biophysica Acta - Molecular Basis of Disease.1822(5):784-793. DOI: 10.1016/j.imlet.2014.04.004.
[24] W. Strober, I. Fuss, P. Mannon. (2007). The fundamental basis of inflammatory bowel disease. The Journal of Clinical Investigation.117(3):514-521. DOI: 10.1016/j.imlet.2014.04.004.
[25] S. Taleban. (2015). Challenges in the diagnosis and management of inflammatory bowel disease in the elderly. Current Treatment Options in Gastroenterology.13(3):275-286. DOI: 10.1016/j.imlet.2014.04.004.
[26] M. Nakaya, Y. Xiao, X. Zhou, J.-H. Chang. et al.(2014). Inflammatory T cell responses rely on amino acid transporter ASCT2 facilitation of glutamine uptake and mTORC1 kinase activation. Immunity.40(5):692-705. DOI: 10.1016/j.imlet.2014.04.004.
[27] K. S. Kuhn, M. Muscaritoli, P. Wischmeyer, P. Stehle. et al.(2010). Glutamine as indispensable nutrient in oncology: experimental and clinical evidence. European Journal of Nutrition.49(4):197-210. DOI: 10.1016/j.imlet.2014.04.004.
[28] W. W. Souba. (1993). Glutamine and cancer. Annals of Surgery.218(6):715-728. DOI: 10.1016/j.imlet.2014.04.004.
[29] Z. Jin, H. Chan, J. Ning, K. Lu. et al.(2015). The role of hydrogen sulfide in pathologies of the vital organs and its clinical application. Journal of Physiology and Pharmacology.66(2):169-179. DOI: 10.1016/j.imlet.2014.04.004.
[30] T. Grimstad, B. Bjørndal, D. Cacabelos, O. G. Aasprong. et al.(2012). Dietary supplementation of krill oil attenuates inflammation and oxidative stress in experimental ulcerative colitis in rats. Scandinavian Journal of Gastroenterology.47(1):49-58. DOI: 10.1016/j.imlet.2014.04.004.
[31] T. K. Kim, Y. S. Park, H. Baik, J. H. Jun. et al.(2016). Melatonin modulates adiponectin expression on murine colitis with sleep deprivation. World Journal of Gastroenterology.22(33):7559-7568. DOI: 10.1016/j.imlet.2014.04.004.
[32] A. Pituch-Zdanowska, A. Banaszkiewicz, P. Albrecht. (2015). The role of dietary fibre in inflammatory bowel disease. Przeglad Gastroenterologiczny.10(3):135-141. DOI: 10.1016/j.imlet.2014.04.004.
[33] B. Bjørndal, T. Grimstad, D. Cacabelos, K. Nylund. et al.(2013). Tetradecylthioacetic acid attenuates inflammation and has antioxidative potential during experimental colitis in rats. Digestive Diseases and Sciences.58(1):97-106. DOI: 10.1016/j.imlet.2014.04.004.
[34] K. L. Flannigan, T. A. Agbor, J.-P. Motta, J. G. P. Ferraz. et al.(2015). Proresolution effects of hydrogen sulfide during colitis are mediated through hypoxia-inducible factor-1. FASEB Journal.29(4):1591-1602. DOI: 10.1016/j.imlet.2014.04.004.
[35] E. V. Loftus. (2004). Clinical epidemiology of inflammatory bowel disease: incidence, prevalence, and environmental influences. Gastroenterology.126(6):1504-1517. DOI: 10.1016/j.imlet.2014.04.004.
[36] N. A. Molodecky, I. S. Soon, D. M. Rabi, W. A. Ghali. et al.(2012). Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology.142(1):46-54.e42. DOI: 10.1016/j.imlet.2014.04.004.
[37] T. Ismail, P. Sestili, S. Akhtar. (2012). Pomegranate peel and fruit extracts: a review of potential anti-inflammatory and anti-infective effects. Journal of Ethnopharmacology.143(2):397-405. DOI: 10.1016/j.imlet.2014.04.004.
[38] A. Zandifar, S. Seifabadi, E. Zandifar. (2015). Comparison of the effect of topical versus systemic L-arginine on wound healing in acute incisional diabetic rat model. Journal of Research in Medical Sciences.20(3):233-238. DOI: 10.1016/j.imlet.2014.04.004.
[39] J. J. de Lima Silva, D. G. Pompeu, N. C. Ximenes, A. S. G. Duarte. et al.(2015). Effects of kaurenoic acid and arginine on random skin flap oxidative stress, inflammation, and cytokines in rats. Aesthetic Plastic Surgery.39(6):971-977. DOI: 10.1016/j.imlet.2014.04.004.
[40] S. C. Ng, W. Tang, J. Y. Ching, M. Wong. et al.(2013). Incidence and phenotype of inflammatory bowel disease based on results from the Asia-Pacific Crohn's and colitis epidemiology study. Gastroenterology.145(1):158-165.e2. DOI: 10.1016/j.imlet.2014.04.004.
[41] A. K. Akobeng, M. Elawad, M. Gordon. (2016). Glutamine for induction of remission in Crohn's disease. The Cochrane Database of Systematic Reviews.2. DOI: 10.1016/j.imlet.2014.04.004.
[42] C. Wong, P. J. Harris, L. R. Ferguson. (2016). Potential benefits of dietary fibre intervention in inflammatory bowel disease. International Journal of Molecular Sciences.17(6, article E919). DOI: 10.1016/j.imlet.2014.04.004.
[43] E. Joo, S. Yamane, A. Hamasaki, N. Harada. et al.(2013). Enteral supplement enriched with glutamine, fiber, and oligosaccharide attenuates experimental colitis in mice. Nutrition.29(3):549-555. DOI: 10.1016/j.imlet.2014.04.004.
[44] H. Xue, A. J. D. Sufit, P. E. Wischmeyer. (2011). Glutamine therapy improves outcome of in vitro and in vivo experimental colitis models. Journal of Parenteral and Enteral Nutrition.35(2):188-197. DOI: 10.1016/j.imlet.2014.04.004.
[45] P. Li, Y.-L. Yin, D. Li, W. S. Kim. et al.(2007). Amino acids and immune function. The British Journal of Nutrition.98(2):237-252. DOI: 10.1016/j.imlet.2014.04.004.
[46] H. R. Sodagari, M. H. Farzaei, R. Bahramsoltani, A. H. Abdolghaffari. et al.(2015). Dietary anthocyanins as a complementary medicinal approach for management of inflammatory bowel disease. Expert Review of Gastroenterology and Hepatology.9(6):807-820. DOI: 10.1016/j.imlet.2014.04.004.
[47] R. Reifen, A. Karlinsky, A. H. Stark, Z. Berkovich. et al.(2015). -Linolenic acid (ALA) is an anti-inflammatory agent in inflammatory bowel disease. Journal of Nutritional Biochemistry.26(12):1632-1640. DOI: 10.1016/j.imlet.2014.04.004.
[48] H. Yang, Y. Li, W. Wu, Q. Sun. et al.(2014). The incidence of inflammatory bowel disease in Northern China: A Prospective Population-based Study. PLOS ONE.9(7). DOI: 10.1016/j.imlet.2014.04.004.
[49] D. D. Rees, R. M. J. Palmer, H. F. Hodson, S. Moncada. et al.(1989). A specific inhibitor of nitric oxide formation from -arginine attenuates endothelium-dependent relaxation. British Journal of Pharmacology.96(2):418-424. DOI: 10.1016/j.imlet.2014.04.004.
[50] B. D. Lovasz, P. A. Golovics, Z. Vegh, P. L. Lakatos. et al.(2013). New trends in inflammatory bowel disease epidemiology and disease course in Eastern Europe. Digestive and Liver Disease.45(4):269-276. DOI: 10.1016/j.imlet.2014.04.004.
[51] M. O. Taha, J. V. De Oliveira, M. Dias Borges, F. De Lucca Melo. et al.(2016). L-arginine modulates intestinal inflammation in rats submitted to mesenteric ischemia-reperfusion injury. Transplantation Proceedings.48(2):512-515. DOI: 10.1016/j.imlet.2014.04.004.
[52] C. Fiocchi. (1998). Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology.115(1):182-205. DOI: 10.1016/j.imlet.2014.04.004.
[53] M. Davaatseren, J.-T. Hwang, J. H. Park, M.-S. Kim. et al.(2013). Poly--glutamic acid attenuates angiogenesis and inflammation in experimental colitis. Mediators of Inflammation.2013-8. DOI: 10.1016/j.imlet.2014.04.004.
[54] C. Bauchart-Thevret, B. Stoll, D. G. Burrin. (2009). Intestinal metabolism of sulfur amino acids. Nutrition Research Reviews.22(2):175-187. DOI: 10.1016/j.imlet.2014.04.004.
[55] M. Schlemmer, U. Suchner, B. Schäpers, E.-M. Duerr. et al.(2015). Is glutamine deficiency the link between inflammation, malnutrition, and fatigue in cancer patients?. Clinical Nutrition.34(6):1258-1265. DOI: 10.1016/j.imlet.2014.04.004.
[56] J. R. Terrill, M. N. Duong, R. Turner, C. Le Guiner. et al.(2016). Levels of inflammation and oxidative stress, and a role for taurine in dystropathology of the golden retriever muscular dystrophy dog model for duchenne muscular dystrophy. Redox Biology.9:276-286. DOI: 10.1016/j.imlet.2014.04.004.
[57] G. W. Moran, A. W. K. Lim, J. L. Bailey, M.-F. Dubeau. et al.(2013). Review article: dermatological complications of immunosuppressive and anti-TNF therapy in inflammatory bowel disease. Alimentary Pharmacology and Therapeutics.38(9):1002-1024. DOI: 10.1016/j.imlet.2014.04.004.
[58] M. Schwab, E. Schäffeler, C. Marx, C. Fischer. et al.(2002). Azathioprine therapy and adverse drug reactions in patients with inflammatory bowel disease: impact of thiopurine S-methyltransferase polymorphism. Pharmacogenetics.12(6):429-436. DOI: 10.1016/j.imlet.2014.04.004.
[59] D. G. Burrin. New insights into sulfur amino acid function in gut health and disease. .45, no. 3:597-598. DOI: 10.1016/j.imlet.2014.04.004.
[60] G. Wu. (2009). Amino acids: metabolism, functions, and nutrition. Amino Acids.37(1):1-17. DOI: 10.1016/j.imlet.2014.04.004.
[61] R. B. Gearry, M. L. Barclay, M. J. Burt, J. A. Collett. et al.(2004). Thiopurine drug adverse effects in a population of New Zealand patients with inflammatory bowel disease. Pharmacoepidemiology and Drug Safety.13(8):563-567. DOI: 10.1016/j.imlet.2014.04.004.
[62] M. G. Neuman, R. M. Nanau. (2012). Inflammatory bowel disease: role of diet, microbiota, life style. Translational Research.160(1):29-44. DOI: 10.1016/j.imlet.2014.04.004.
[63] J. Torres, S. Buche, E. Delaporte, J.-F. Colombel. et al.(2013). Skin side effects of inflammatory bowel disease therapy. Inflammatory Bowel Diseases.19(5):1086-1098. DOI: 10.1016/j.imlet.2014.04.004.
[64] M. Shimizu, Z. Zhao, Y. Ishimoto, H. Satsu. et al.(2009). Dietary taurine attenuates dextran sulfate sodium (DSS)-induced experimental colitis in mice. Advances in Experimental Medicine and Biology.643:265-271. DOI: 10.1016/j.imlet.2014.04.004.
[65] I. Morgenstern, M. T. M. Raijmakers, W. H. M. Peters, H. Hoensch. et al.(2003). Homocysteine, cysteine, and glutathione in human colonic mucosa: elevated levels of homocysteine in patients with inflammatory bowel disease. Digestive Diseases and Sciences.48(10):2083-2090. DOI: 10.1016/j.imlet.2014.04.004.
[66] W. W. Wang, S. Y. Qiao, D. F. Li. (2009). Amino acids and gut function. Amino Acids.37(1):105-110. DOI: 10.1016/j.imlet.2014.04.004.
[67] L. Cosmi, L. Maggi, V. Santarlasci, F. Liotta. et al.(2014). T helper cells plasticity in inflammation. Cytometry Part A.85(1):36-42. DOI: 10.1016/j.imlet.2014.04.004.
[68] E. Maroufyan, A. Kasim, G. Yong Meng, M. Ebrahimi. et al.(2013). Effect of dietary combination of methionine and fish oil on cellular immunity and plasma fatty acids in infectious bursal disease challenged chickens. The Scientific World Journal.2013-9. DOI: 10.1016/j.imlet.2014.04.004.
[69] X. Liu, M. Beaumont, F. Walker, C. Chaumontet. et al.(2013). Beneficial effects of an amino acid mixture on colonic mucosal healing in rats. Inflammatory Bowel Diseases.19(13):2895-2905. DOI: 10.1016/j.imlet.2014.04.004.
[70] S. De Silva, S. Devlin, R. Panaccione. (2010). Optimizing the safety of biologic therapy for IBD. Nature Reviews Gastroenterology and Hepatology.7(2):93-101. DOI: 10.1016/j.imlet.2014.04.004.
[71] L. G. Guijarro, J. Mate, J. P. Gisbert, J. L. Perez-Calle. et al.(2008). N-acetyl-L-cysteine combined with mesalamine in the treatment of ulcerative colitis: randomized, placebo-controlled pilot study. World Journal of Gastroenterology.14(18):2851-2857. DOI: 10.1016/j.imlet.2014.04.004.
[72] M. Giriş, B. Depboylu, S. Dogru-Abbasoglu, Y. Erbil. et al.(2008). Effect of taurine on oxidative stress and apoptosis-related protein expression in trinitrobenzene sulphonic acid-induced colitis. Clinical and Experimental Immunology.152(1):102-110. DOI: 10.1016/j.imlet.2014.04.004.
[73] H. Zhang, J. Kovacs-Nolan, T. Kodera, Y. Eto. et al.(2015). -Glutamyl cysteine and -glutamyl valine inhibit TNF- signaling in intestinal epithelial cells and reduce inflammation in a mouse model of colitis via allosteric activation of the calcium-sensing receptor. Biochimica et Biophysica Acta—Molecular Basis of Disease.1852(5):792-804. DOI: 10.1016/j.imlet.2014.04.004.
[74] K. Joo, Y. Lee, D. Choi, J. Han. et al.(2009). An anti-inflammatory mechanism of taurine conjugated 5-aminosalicylic acid against experimental colitis: Taurine chloramine potentiates inhibitory effect of 5-aminosalicylic acid on IL-1-mediated NFB activation. European Journal of Pharmacology.618(1–3):91-97. DOI: 10.1016/j.imlet.2014.04.004.
[75] J. R. Marchesi, E. Holmes, F. Khan, S. Kochhar. et al.(2007). Rapid and noninvasive metabonomic characterization of inflammatory bowel disease. Journal of Proteome Research.6(2):546-551. DOI: 10.1016/j.imlet.2014.04.004.
[76] F. Santangelo. (2002). The regulation of sulphurated amino acid junctions: fact or fiction in the field of inflammation?. Amino Acids.23(4):359-365. DOI: 10.1016/j.imlet.2014.04.004.
[77] M. Cöeffier, R. Marion-Letellier, P. Déchelotte. (2010). Potential for amino acids supplementation during inflammatory bowel diseases. Inflammatory Bowel Diseases.16(3):518-524. DOI: 10.1016/j.imlet.2014.04.004.
[78] K. Balasubramanian, S. Kumar, R. R. Singh, U. Sharma. et al.(2009). Metabolism of the colonic mucosa in patients with inflammatory bowel diseases: an in vitro proton magnetic resonance spectroscopy study. Magnetic Resonance Imaging.27(1):79-86. DOI: 10.1016/j.imlet.2014.04.004.
[79] R. Schicho, R. Shaykhutdinov, J. Ngo, A. Nazyrova. et al.(2012). Quantitative metabolomic profiling of serum, plasma, and urine by 1H NMR spectroscopy discriminates between patients with inflammatory bowel disease and healthy individuals. Journal of Proteome Research.11(6):3344-3357. DOI: 10.1016/j.imlet.2014.04.004.
[80] A. M. Al-Drees, M. S. Khalil. (2016). Histological and immunohistochemical effects of L-arginine and silymarin on TNBS-induced inflammatory bowel disease in rats. Histology and Histopathology.31(11):1259-1270. DOI: 10.1016/j.imlet.2014.04.004.
[81] T. Dassopoulos, S. Sultan, Y. T. Falck-Ytter, J. M. Inadomi. et al.(2013). American gastroenterological association institute technical review on the use of thiopurines, methotrexate, and anti-TNF- biologic drugs for the induction and maintenance of remission in inflammatory Crohn's disease. Gastroenterology.145(6):1464-1478.e5. DOI: 10.1016/j.imlet.2014.04.004.
[82] F. M. Ruemmele. (2016). Role of diet in inflammatory bowel disease. Annals of Nutrition and Metabolism.68, supplement 1:33-41. DOI: 10.1016/j.imlet.2014.04.004.
[83] M. A. Rosillo, M. Sánchez-Hidalgo, A. Cárdeno, M. Aparicio-Soto. et al.(2012). Dietary supplementation of an ellagic acid-enriched pomegranate extract attenuates chronic colonic inflammation in rats. Pharmacological Research.66(3):235-242. DOI: 10.1016/j.imlet.2014.04.004.
[84] H. Vargas Robles, A. F. Citalán Madrid, A. García Ponce, A. Silva Olivares. et al.(2016). Experimental colitis is attenuated by cardioprotective diet supplementation that reduces oxidative stress, inflammation, and mucosal damage. Oxidative Medicine and Cellular Longevity.2016-9. DOI: 10.1016/j.imlet.2014.04.004.
[85] R. Altomare, G. Damiano, A. Abruzzo, V. D. Palumbo. et al.(2015). Enteral nutrition support to treat malnutrition in inflammatory bowel disease. Nutrients.7(4):2125-2133. DOI: 10.1016/j.imlet.2014.04.004.
[86] M. Medani, D. Collins, N. G. Docherty, A. W. Baird. et al.(2011). Emerging role of hydrogen sulfide in colonic physiology and pathophysiology. Inflammatory Bowel Diseases.17(7):1620-1625. DOI: 10.1016/j.imlet.2014.04.004.
[87] M. C. Poffenberger, R. G. Jones. (2014). Amino acids fuel T cell-mediated inflammation. Immunity.40(5):635-637. DOI: 10.1016/j.imlet.2014.04.004.
[88] K. N. Pollizzi, J. D. Powell. (2015). Regulation of T cells by mTOR: the known knowns and the known unknowns. Trends in Immunology.36(1):13-20. DOI: 10.1016/j.imlet.2014.04.004.
[89] J.-P. Motta, K. L. Flannigan, T. A. Agbor, J. K. Beatty. et al.(2015). Hydrogen sulfide protects from colitis and restores intestinal microbiota biofilm and mucus production. Inflammatory Bowel Diseases.21(5):1006-1017. DOI: 10.1016/j.imlet.2014.04.004.
[90] A. Andou, T. Hisamatsu, S. Okamoto, H. Chinen. et al.(2009). Dietary histidine ameliorates murine colitis by inhibition of proinflammatory cytokine production from macrophages. Gastroenterology.136(2):564-574.e2. DOI: 10.1016/j.imlet.2014.04.004.
[91] H. Chi. (2012). Regulation and function of mTOR signalling in T cell fate decisions. Nature Reviews Immunology.12(5):325-338. DOI: 10.1016/j.imlet.2014.04.004.
[92] C. J. Kim, J. Kovacs-Nolan, C. Yang, T. Archbold. et al.(2009). L-cysteine supplementation attenuates local inflammation and restores gut homeostasis in a porcine model of colitis. Biochimica et Biophysica Acta - General Subjects.1790(10):1161-1169. DOI: 10.1016/j.imlet.2014.04.004.
[93] Y. Chen, D. Li, Z. Dai, X. Piao. et al.(2014). L-Methionine supplementation maintains the integrity and barrier function of the small-intestinal mucosa in post-weaning piglets. Amino Acids.46(4):1131-1142. DOI: 10.1016/j.imlet.2014.04.004.
[94] P. D. Pezze, S. Ruf, A. G. Sonntag, M. Langelaar-Makkinje. et al.(2016). A systems study reveals concurrent activation of AMPK and mTOR by amino acids. Nature Communications.7, article 13254. DOI: 10.1016/j.imlet.2014.04.004.
[95] N. Rittig, E. Bach, H. H. Thomsen, M. Johannsen. et al.(2016). Amino acid supplementation is anabolic during the acute phase of endotoxin-induced inflammation: a human randomized crossover trial. Clinical Nutrition.35(2):322-330. DOI: 10.1016/j.imlet.2014.04.004.
[96] L. Bar-Peled, D. M. Sabatini. (2014). Regulation of mTORC1 by amino acids. Trends in Cell Biology.24(7):400-406. DOI: 10.1016/j.imlet.2014.04.004.
[97] H. Kim, H. Jeon, H. Kong, Y. Yang. et al.(2006). A molecular mechanism for the anti-inflammatory effect of taurine-conjugated 5-aminosalicylic acid in inflamed colon. Molecular Pharmacology.69(4):1405-1412. DOI: 10.1016/j.imlet.2014.04.004.
[98] Z. Zhao, H. Satsu, M. Fujisawa, M. Hori. et al.(2008). Attenuation by dietary taurine of dextran sulfate sodium-induced colitis in mice and of THP-1-induced damage to intestinal Caco-2 cell monolayers. Amino Acids.35(1):217-224. DOI: 10.1016/j.imlet.2014.04.004.
[99] L. A. Coburn, X. Gong, K. Singh, M. Asim. et al.(2012). L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS ONE.7(3). DOI: 10.1016/j.imlet.2014.04.004.
[100] I. Tsune, K. Ikejima, M. Hirose, M. Yoshikawa. et al.(2003). Dietary glycine prevents chemical-induced experimental colitis in the rat. Gastroenterology.125(3):775-785. DOI: 10.1016/j.imlet.2014.04.004.
[101] S. J. Crozier, S. R. Kimball, S. W. Emmert, J. C. Anthony. et al.(2005). Oral leucine administration stimulates protein synthesis in rat skeletal muscle. Journal of Nutrition.135(3):376-382. DOI: 10.1016/j.imlet.2014.04.004.
[102] R. Ravindran, J. Loebbermann, H. I. Nakaya, N. Khan. et al.(2016). The amino acid sensor GCN2 controls gut inflammation by inhibiting inflammasome activation. Nature.531(7595):523-527. DOI: 10.1016/j.imlet.2014.04.004.
[103] H. Kato, K. Miura, S. Nakano, K. Suzuki. et al.(2016). Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction. Amino Acids.48(9):2145-2155. DOI: 10.1016/j.imlet.2014.04.004.
文献评价指标
浏览 141次
下载全文 49次
评分次数 0次
用户评分 0.0分
分享 1次