首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2017 ,2017-03-13
Experimental Analysis and Discussion on the Damage Variable of Frozen Loess
Research Article
Cong Cai 1 , 2 Wei Ma 1 Shuping Zhao 3 Yanhu Mu 1
Show affiliations
DOI:10.1155/2017/1689251
Received 2016-10-25, accepted for publication 2017-02-08, Published 2017-02-08
PDF
摘要

The damage variable is very important to study damage evolution of material. Taking frozen loess as an example, a series of triaxial compression and triaxial loading-unloading tests are performed under five strain rates of 5.0 × 10−6–1.3 × 10−2/s at a temperature of −6°C. A damage criterion of frozen loess is defined and a damage factor Dc is introduced to satisfy the requirements of the engineering application. The damage variable of frozen loess is investigated using the following four methods: the stiffness degradation method, the deformation increase method, the dissipated energy increase method, and the constitutive model deducing method during deformation process. In addition, the advantages and disadvantages of the four methods are discussed when they are used for frozen loess material. According to the discussion, the plastic strain may be the most appropriate variable to characterize the damage evolution of frozen loess during the deformation process based on the material properties and the nature of the material service.

授权许可

Copyright © 2017 Cong Cai et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Deviator stress-axial strain curves for frozen loess under C tests.

Peak strain for frozen loess under C tests.

Deviator stress-axial strain curves for frozen loess under L-U-C tests.

The comparison of C and L-U-C tests under different strain rates.

The comparison of C and L-U-C tests under different strain rates.

The comparison of C and L-U-C tests under different strain rates.

The comparison of C and L-U-C tests under different strain rates.

The comparison of C and L-U-C tests under different strain rates.

The accuracy of the test data.

The accuracy of the test data.

The selected criterion of critical damage for frozen loess.

The decoupling principle on the hysteretic loop.

Variation of Eh and Es with axial strain under different strain rates.

Variation of Eh and Es with axial strain under different strain rates.

The definition of deformation modulus Ed.

Variation of Ed with axial strain under different strain rates.

Variation of the damage variable with axial strain under different strain rates (stiffness).

Variation of the plastic strain with axial strain under different strain rates.

Variation of the damage variable with axial strain under different strain rates (plastic strain).

Variation of the hysteresis loop area with axial strain under different strain rates.

The calculation method of dissipated energy (εijp is the plastic strain).

Variation of dissipated energy with axial strain under different strain rates.

Variation of the damage variable with axial strain under different strain rates (dissipated energy).

The model matches effect.

Variation of the damage variable with axial strain under different strain rates (constitutive model).

通讯作者

Wei Ma.State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China, cas.cn.cc20109163@163.com

推荐引用方式

Cong Cai,Wei Ma,Shuping Zhao,Yanhu Mu. Experimental Analysis and Discussion on the Damage Variable of Frozen Loess. Advances in Materials Science and Engineering ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] S. P. Zhao, W. Ma, J. F. Zheng, G. D. Jiao. et al.(2012). Damage dissipation potential of frozen remolded Lanzhou loess based on CT uniaxial compression test results. Chinese Journal of Geotechnical Engineering.34:2019-2025. DOI: 10.1007/bf01140837.
[2] L. M. Kachanov. (1986). Introduction to Continuum Damage Mechanics. DOI: 10.1007/bf01140837.
[3] Z. Zhou, W. Ma, S. Zhang, H. Du. et al.(2016). Multiaxial creep of frozen loess. Mechanics of Materials.95:172-191. DOI: 10.1007/bf01140837.
[4] I. Carol, E. Rizzi, K. Willam. (1994). A unified theory of elastic degradation and damage based on a loading surface. International Journal of Solids and Structures.31(20):2835-2865. DOI: 10.1007/bf01140837.
[5] X. T. Xu, Y. H. Dong, C. X. Fan. (2015). Laboratory investigation on energy dissipation and damage characteristics of frozen loess during deformation process. Cold Regions Science and Technology.109:1-8. DOI: 10.1007/bf01140837.
[6] L. M. Kachanov. (1958). Time of the rupture process under creep conditions. Akad. Nauk SSR Otd. Tech.8:6. DOI: 10.1007/bf01140837.
[7] Z. P. Bažant, J. Mazars. (1990). France-U.S. workshop on strain localization and size effect due to cracking and damage. Journal of Engineering Mechanics.116(6):1412-1424. DOI: 10.1007/bf01140837.
[8] Z. M. Shi, H. L. Ma, J. B. Li. (2011). A novel damage variable to characterize evolution of microstructure with plastic deformation for ductile metal materials under tensile loading. Engineering Fracture Mechanics.78(3):503-513. DOI: 10.1007/bf01140837.
[9] S. W. Yu. (1997). Damage Mechanics. DOI: 10.1007/bf01140837.
[10] J. Prévost. (1977). Mathematical modelling of monotonic and cyclic undrained clay behaviour. International Journal for Numerical and Analytical Methods in Geomechanics.1(2):195-216. DOI: 10.1007/bf01140837.
[11] J. Lemaitre, J. Dufailly. (1987). Damage measurements. Engineering Fracture Mechanics.28(5-6):643-661. DOI: 10.1007/bf01140837.
[12] F. Hild, A. Bouterf, S. Roux. (2015). Damage measurements via DIC. International Journal of Fracture.191(1-2):77-105. DOI: 10.1007/bf01140837.
[13] G. Swoboda, Q. Yang. (1999). An energy-based damage model of geomaterials—I. Formulation and numerical results. International Journal of Solids and Structures.36(12):1719-1734. DOI: 10.1007/bf01140837.
[14] R. Lapovok. (2002). Damage evolution under severe plastic deformation. International Journal of Fracture.115(2):159-172. DOI: 10.1007/bf01140837.
[15] D. Huang, Y. Li. (2014). Conversion of strain energy in Triaxial Unloading Tests on Marble. International Journal of Rock Mechanics and Mining Sciences.66:160-168. DOI: 10.1007/bf01140837.
[16] R. W. Sullivan. (2008). Development of a viscoelastic continuum damage model for cyclic loading. Mechanics of Time-Dependent Materials.12(4):329-342. DOI: 10.1007/bf01140837.
[17] R. A. Schapery. (1984). Correspondence principles and a generalized J integral for large deformation and fracture analysis of viscoelastic media. International Journal of Fracture.25(3):195-223. DOI: 10.1007/bf01140837.
[18] G. E. Mann, T. Sumitomo, C. H. Cáceres, J. R. Griffiths. et al.(2007). Reversible plastic strain during cyclic loading-unloading of Mg and Mg-Zn alloys. Materials Science and Engineering A.456(1-2):138-146. DOI: 10.1007/bf01140837.
[19] M. Alves, J. Yu, N. Jones. (2000). On the elastic modulus degradation in continuum damage mechanics. Computers and Structures.76(6):703-712. DOI: 10.1007/bf01140837.
[20] Y. Y. Cao, S. P. Ma, X. Wang, Z. Y. Hong. et al.(2011). A new definition of damage variable for rock material based on the spatial characteristics of deformation fields. Advanced Materials Research.146-147:865-868. DOI: 10.1007/bf01140837.
[21] H. P. Xie. (1990). Rock and Concrete Damage Mechanics. DOI: 10.1007/bf01140837.
[22] M. K. Darabi, R. K. Abu Al-Rub, E. A. Masad, C.-W. Huang. et al.(2011). A thermo-viscoelastic-viscoplastic-viscodamage constitutive model for asphaltic materials. International Journal of Solids and Structures.48(1):191-207. DOI: 10.1007/bf01140837.
[23] A. S. Chiarelli, J. F. Shao, N. Hoteit. (2003). Modeling of elastoplastic damage behavior of a claystone. International Journal of Plasticity.19(1):23-45. DOI: 10.1007/bf01140837.
[24] G. Z. Voyiadjis. (2015). Handbook of Damage Mechanics. DOI: 10.1007/bf01140837.
[25] S. Dhar, P. M. Dixit, R. Sethuraman. (2000). A continuum damage mechanics model for ductile fracture. International Journal of Pressure Vessels and Piping.77(6):335-344. DOI: 10.1007/bf01140837.
[26] M. Liao, Y. Lai, E. Liu, X. Wan. et al.(2016). A fractional order creep constitutive model of warm frozen silt. Acta Geotechnica:1-13. DOI: 10.1007/bf01140837.
[27] J. Lemaitre. (1998). A Course on Damage Mechanics. DOI: 10.1007/bf01140837.
[28] Y. Yugui, G. Feng, C. Hongmei, H. Peng. et al.(2016). Energy dissipation and failure criterion of artificial frozen soil. Cold Regions Science and Technology.129:137-144. DOI: 10.1007/bf01140837.
[29] J. Lemaitre. (1985). Continuous damage mechanics model for ductile fracture. Journal of Engineering Materials and Technology, Transactions of the ASME.107(1):83-89. DOI: 10.1007/bf01140837.
[30] H. Du, W. Ma, S. Zhang, Z. Zhou. et al.(2016). Strength properties of ice-rich frozen silty sands under uniaxial compression for a wide range of strain rates and moisture contents. Cold Regions Science and Technology.123:107-113. DOI: 10.1007/bf01140837.
[31] J. Lemaitre. (1987). Formulation and identification of damage kinetic constitutive equations. Continuum Damage Mechanics Theory and Application.295:37-89. DOI: 10.1007/bf01140837.
[32] J. Shao, A. Chiarelli, N. Hoteit. (1998). Modeling of coupled elastoplastic damage in rock materials. International Journal of Rock Mechanics and Mining Sciences.35(4-5):444. DOI: 10.1007/bf01140837.
[33] J. Q. Xu. (2009). Theory on the Strength of Materials. DOI: 10.1007/bf01140837.
文献评价指标
浏览 271次
下载全文 88次
评分次数 0次
用户评分 0.0分
分享 0次