首页 » 文章 » 文章详细信息
Bioinorganic Chemistry and Applications Volume 2017 ,2017-02-28
Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Cadmium from Aqueous Solution by Modified Biomass Ash
Research Article
Lei Xu 1 , 2 , 3 , 4 Xuebo Zheng 1 , 2 , 3 , 4 Hongbiao Cui 5 Zhenqiu Zhu 1 , 2 , 3 , 4 Jiani Liang 1 , 2 , 3 Jing Zhou 1 , 2 , 3 , 4
Show affiliations
DOI:10.1155/2017/3695604
Received 2016-09-27, accepted for publication 2017-01-22, Published 2017-01-22
PDF
摘要

Natural biomass ash of agricultural residuals was collected from a power plant and modified with hexagonal mesoporous silica and functionalized with 3-aminopropyltriethoxysilane. The physicochemical and morphological properties of the biomass ash were analyzed by ICP-OES, SEM, TEM-EDS, FTIR, and BET analysis. The adsorption behavior of the modified product for Cd2+ in aqueous solution was studied as a function of pH, initial metal concentration, equilibrium time, and temperature. Results showed that the specific surface area of the modified product was 9 times that of the natural biomass ash. The modified biomass ash exhibited high affinity for Cd2+ and its adsorption capacity increased sharply with increasing pH from 4.0 to 6.0. The maximum adsorption capacity was 23.95 mg/g in a pH 5 solution with an initial metal concentration of 50 mg/L and a contact time of 90 min. The adsorption of Cd2+ onto the modified biomass ash was well fitted to the Langmuir model and it followed pseudo-second-order kinetics. Thermodynamic analysis results showed that the adsorption of Cd2+ was spontaneous and endothermic in nature. The results suggest that the modified biomass ash is promising for use as an inexpensive and effective adsorbent for Cd2+ removal from aqueous solution.

授权许可

Copyright © 2017 Lei Xu et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

(a) SEM of biomass ash at 20 KeV; magnification 500. (b) SEM of synthesized matrix at 20 keV; magnification 500. (c) EDS analysis of elemental composition of biomass ash. (d) EDS analysis of elemental composition of modified biomass ash and (e) FT-IR spectra: (a) biomass ash and (b) synthesized matrix.

(a) SEM of biomass ash at 20 KeV; magnification 500. (b) SEM of synthesized matrix at 20 keV; magnification 500. (c) EDS analysis of elemental composition of biomass ash. (d) EDS analysis of elemental composition of modified biomass ash and (e) FT-IR spectra: (a) biomass ash and (b) synthesized matrix.

(a) SEM of biomass ash at 20 KeV; magnification 500. (b) SEM of synthesized matrix at 20 keV; magnification 500. (c) EDS analysis of elemental composition of biomass ash. (d) EDS analysis of elemental composition of modified biomass ash and (e) FT-IR spectra: (a) biomass ash and (b) synthesized matrix.

(a) SEM of biomass ash at 20 KeV; magnification 500. (b) SEM of synthesized matrix at 20 keV; magnification 500. (c) EDS analysis of elemental composition of biomass ash. (d) EDS analysis of elemental composition of modified biomass ash and (e) FT-IR spectra: (a) biomass ash and (b) synthesized matrix.

(a) SEM of biomass ash at 20 KeV; magnification 500. (b) SEM of synthesized matrix at 20 keV; magnification 500. (c) EDS analysis of elemental composition of biomass ash. (d) EDS analysis of elemental composition of modified biomass ash and (e) FT-IR spectra: (a) biomass ash and (b) synthesized matrix.

Effect of pH on the adsorption of Cd2+ on biomass ash and modified biomass ash (initial concentrations of Cd2+, 50 mg/L; biomass ash concentration, 4 g/L; T = 30°C).

Langmuir model fit of modified biomass ash at different temperature.

Sorption kinetics: concentration and removal (%) of Cd2+ from aqueous solution versus sorption time (initial concentrations of Cd2+, 100 mg/L; biomass ash concentration, 2 g/L; T = 30°C; initial pH 5.0).

Plots of the pseudo-second-order kinetics for the adsorptions of Cd2+ on biomass ash and the synthesized matrix (initial concentrations of Cd2+, 100 mg/L; biomass ash concentration, 2 g/L; T = 30°C; pH 5.0).

通讯作者

Jing Zhou.Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China, cas.cn;Key Laboratory of Soil Environment and Pollution Remediation, Chinese Academy of Science, Nanjing 210008, China, cas.cn;National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Liujiazhan Plantation, Yingtan 335211, China, cas.cn;University of Chinese Academy of Sciences, Beijing 100049, China, ucas.ac.cn.zhoujing@issas.ac.cn

推荐引用方式

Lei Xu,Xuebo Zheng,Hongbiao Cui,Zhenqiu Zhu,Jiani Liang,Jing Zhou. Equilibrium, Kinetic, and Thermodynamic Studies on the Adsorption of Cadmium from Aqueous Solution by Modified Biomass Ash. Bioinorganic Chemistry and Applications ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Pizarro, X. Castillo, S. Jara, C. Ortiz. et al.(2015). Adsorption of Cu2+ on coal fly ash modified with functionalized mesoporous silica. Fuel.156:96-102. DOI: 10.1016/s0960-8524(01)00118-3.
[2] S. Hojati, H. Khademi. (2013). Cadmium sorption from aqueous solutions onto Iranian sepiolite: kinetics and isotherms. Journal of Central South University.20(12):3627-3632. DOI: 10.1016/s0960-8524(01)00118-3.
[3] F. Simantiraki, E. Gidarakos. (2015). Comparative assessment of compost and zeolite utilisation for the simultaneous removal of BTEX, Cd and Zn from the aqueous phase: Batch and Continuous Flow Study. Journal of Environmental Management.159:218-226. DOI: 10.1016/s0960-8524(01)00118-3.
[4] S. Ying, W. Caibin, H. Xuefeng, L. Luyan. et al.(2013). Treatment Cu-containing wastewater by using activated carbon made from coal ash. Environmental Chemistry.32:819-826. DOI: 10.1016/s0960-8524(01)00118-3.
[5] T. C. Nguyen, P. Loganathan, T. V. Nguyen, S. Vigneswaran. et al.(2015). Simultaneous adsorption of Cd, Cr, Cu, Pb, and Zn by an iron-coated Australian zeolite in batch and fixed-bed column studies. Chemical Engineering Journal.270:393-404. DOI: 10.1016/s0960-8524(01)00118-3.
[6] V. K. Gupta, I. Ali. (2004). Removal of lead and chromium from wastewater using bagasse fly ash—a sugar industry waste. Journal of Colloid and Interface Science.271(2):321-328. DOI: 10.1016/s0960-8524(01)00118-3.
[7] S. Wang, H. Li. (2005). Dye adsorption on unburned carbon: kinetics and equilibrium. Journal of Hazardous Materials.126(1-3):71-77. DOI: 10.1016/s0960-8524(01)00118-3.
[8] T. Motsi, N. A. Rowson, M. J. H. Simmons. (2009). Adsorption of heavy metals from acid mine drainage by natural zeolite. International Journal of Mineral Processing.92(1-2):42-48. DOI: 10.1016/s0960-8524(01)00118-3.
[9] A. A. Khan, W. de Jong, P. J. Jansens, H. Spliethoff. et al.(2009). Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Processing Technology.90(1):21-50. DOI: 10.1016/s0960-8524(01)00118-3.
[10] P. McKendry. (2002). Energy production from biomass (part 1): overview of biomass. Bioresource Technology.83(1):37-46. DOI: 10.1016/s0960-8524(01)00118-3.
[11] L. Shao, J. Chen. (2005). Synthesis and application of nanoparticles by a high gravity method. China Particuology.3(1-2):134-135. DOI: 10.1016/s0960-8524(01)00118-3.
[12] J. Liu, X. Feng, G. E. Fryxell, L.-Q. Wang. et al.(1998). Hybrid mesoporous materials with functionalized monolayers. Advanced Materials.10(2):161-165. DOI: 10.1016/s0960-8524(01)00118-3.
[13] K. O. Adebowale, E. I. Unuabonah, B. I. Olu-Owolabi. (2008). Kinetic and thermodynamic aspects of the adsorption of Pb and Cd ions on tripolyphosphate-modified kaolinite clay. Chemical Engineering Journal.136(2-3):99-107. DOI: 10.1016/s0960-8524(01)00118-3.
[14] S. E. Létant, T. W. Van Buuren, L. J. Terminello. (2004). Nanochannel arrays on silicon platforms by electrochemistry. Nano Letters.4(9):1705-1707. DOI: 10.1016/s0960-8524(01)00118-3.
[15] F. Noli, G. Buema, P. Misaelides, M. Harja. et al.(2015). New materials synthesized from ash under moderate conditions for removal of toxic and radioactive metals. Journal of Radioanalytical and Nuclear Chemistry.303(3):2303-2311. DOI: 10.1016/s0960-8524(01)00118-3.
[16] R. Barbosa, N. Lapa, H. Lopes, A. Günther. et al.(2014). Biomass fly ashes as low-cost chemical agents for Pb removal from synthetic and industrial wastewaters. Journal of Colloid and Interface Science.424:27-36. DOI: 10.1016/s0960-8524(01)00118-3.
[17] A. Bourliva, K. Michailidis, C. Sikalidis, A. Filippidis. et al.(2013). Lead removal from aqueous solutions by natural Greek bentonites. Clay Minerals.48(5):771-787. DOI: 10.1016/s0960-8524(01)00118-3.
[18] I. Langmuir. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. Journal of the American Chemical Society.40(9):1361-1403. DOI: 10.1016/s0960-8524(01)00118-3.
[19] H. Freundlich. (1906). Over the adsorption in solution. The Journal of Physical Chemistry.57:e470. DOI: 10.1016/s0960-8524(01)00118-3.
[20] J. Cao, Y. Wu, Y. Jin, P. Yilihan. et al.(2014). Response surface methodology approach for optimization of the removal of chromium(VI) by NH2-MCM-41. Journal of the Taiwan Institute of Chemical Engineers.45(3):860-868. DOI: 10.1016/s0960-8524(01)00118-3.
[21] Y. S. Al-Degs, M. I. El-Barghouthi, A. H. El-Sheikh, G. M. Walker. et al.(2008). Effect of solution pH, ionic strength, and temperature on adsorption behavior of reactive dyes on activated carbon. Dyes and Pigments.77(1):16-23. DOI: 10.1016/s0960-8524(01)00118-3.
[22] F. A. B. Silva, F. L. Pissetti. (2014). Adsorption of cadmium ions on thiol or sulfonic-functionalized poly(dimethylsiloxane) networks. Journal of Colloid and Interface Science.416:95-100. DOI: 10.1016/s0960-8524(01)00118-3.
[23] A. Walcarius, L. Mercier. (2010). Mesoporous organosilica adsorbents: nanoengineered materials for removal of organic and inorganic pollutants. Journal of Materials Chemistry.20(22):4478-4511. DOI: 10.1016/s0960-8524(01)00118-3.
[24] Z. Wang, G. Liu, X. Monica, F. Li. et al.(2014). Adsorption of Cd (II) varies with biochars derived at different pyrolysis temperatures. Huan Jing Ke Xue.35(12):4735-4744. DOI: 10.1016/s0960-8524(01)00118-3.
[25] Y. Liu, X. Sun, B. Li. (2010). Adsorption of Hg2+ and Cd2+ by ethylenediamine modified peanut shells. Carbohydrate Polymers.81(2):335-339. DOI: 10.1016/s0960-8524(01)00118-3.
[26] J. Fu, Y. Li, C. Ye, C. Lin. et al.(2012). Study on the adsoption kinetics and thermodynamics of DMF on macroporous adsorbents. Acta Scientiae Circumstantiae.32(3):639-644. DOI: 10.1016/s0960-8524(01)00118-3.
[27] S. Y. Zhang Aiju, L. Zicheng. (2006). Progress in research on synthesis mechanism of mesoporous materials and their applications. Journal of Hebei Institute of Technology.28:75-79. DOI: 10.1016/s0960-8524(01)00118-3.
[28] Z. Huang, X.-D. Pan, P.-G. Wu, J.-L. Han. et al.(2014). Heavy metals in vegetables and the health risk to population in Zhejiang, China. Food Control.36(1):248-252. DOI: 10.1016/s0960-8524(01)00118-3.
[29] S. Cetin, E. Pehlivan. (2007). The use of fly ash as a low cost, environmentally friendly alternative to activated carbon for the removal of heavy metals from aqueous solutions. Colloids and Surfaces A: Physicochemical and Engineering Aspects.298(1-2):83-87. DOI: 10.1016/s0960-8524(01)00118-3.
[30] F. Dawodu, G. Akpomie, I. Ogbu. (2012). Application of kinetic rate equations on the removal of copper (II) ions by adsorption unto Aloji Kaolinite clay mineral. International Journal of Multidisciplinary Sciences and Engineering.3:21-26. DOI: 10.1016/s0960-8524(01)00118-3.
[31] M. Machida, B. Fotoohi, Y. Amamo, T. Ohba. et al.(2012). Cadmium(II) adsorption using functional mesoporous silica and activated carbon. Journal of Hazardous Materials.221-222:220-227. DOI: 10.1016/s0960-8524(01)00118-3.
[32] W. Stumm, J. Morgan. (1996). Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. DOI: 10.1016/s0960-8524(01)00118-3.
[33] K. K. I. U. Arunakumara, B. C. Walpola, M.-H. Yoon. (2013). Current status of heavy metal contamination in Asia's rice lands. Reviews in Environmental Science and Biotechnology.12(4):355-377. DOI: 10.1016/s0960-8524(01)00118-3.
[34] V. Sheoran, A. S. Sheoran, P. Poonia. (2010). Role of hyperaccumulators in phytoextraction of metals from contaminated mining sites: a review. Critical Reviews in Environmental Science and Technology.41(2):168-214. DOI: 10.1016/s0960-8524(01)00118-3.
[35] H. Javadian, F. Ghorbani, H.-A. Tayebi, S. M. H. Asl. et al.(2015). Study of the adsorption of Cd (II) from aqueous solution using zeolite-based geopolymer, synthesized from coal fly ash; kinetic, isotherm and thermodynamic studies. Arabian Journal of Chemistry.8(6):837-849. DOI: 10.1016/s0960-8524(01)00118-3.
[36] J. Anwar, U. Shafique, Waheed-uz-Zaman, M. Salman. et al.(2010). Removal of Pb(II) and Cd(II) from water by adsorption on peels of banana. Bioresource Technology.101(6):1752-1755. DOI: 10.1016/s0960-8524(01)00118-3.
[37] G. Wang, L. Shen, C. Sheng. (2011). Characterization of biomass ashes from power plants firing agricultural residues. Energy and Fuels.26(1):102-111. DOI: 10.1016/s0960-8524(01)00118-3.
[38] H. Wang, B. Gao, S. Wang, J. Fang. et al.(2015). Removal of Pb(II), Cu(II), and Cd(II) from aqueous solutions by biochar derived from KMnO4 treated hickory wood. Bioresource Technology.197:356-362. DOI: 10.1016/s0960-8524(01)00118-3.
[39] M.-Q. Jiang, X.-Y. Jin, X.-Q. Lu, Z.-L. Chen. et al.(2010). Adsorption of Pb(II), Cd(II), Ni(II) and Cu(II) onto natural kaolinite clay. Desalination.252(1–3):33-39. DOI: 10.1016/s0960-8524(01)00118-3.
[40] B. Sadeghalvad, M. Armaghan, A. Azadmehr. (2014). Using Iranian Bentonite (Birjand Area) to remove cadmium from aqueous solutions. Mine Water and the Environment.33(1):79-88. DOI: 10.1016/s0960-8524(01)00118-3.
[41] I. Cretescu, G. Soreanu, M. Harja. (2015). A low-cost sorbent for removal of copper ions from wastewaters based on sawdust/fly ash mixture. International Journal of Environmental Science and Technology.12(6):1799-1810. DOI: 10.1016/s0960-8524(01)00118-3.
[42] B. Kiran, A. Kaushik, C. P. Kaushik. (2007). Response surface methodological approach for optimizing removal of Cr (VI) from aqueous solution using immobilized cyanobacterium. Chemical Engineering Journal.126(2-3):147-153. DOI: 10.1016/s0960-8524(01)00118-3.
[43] S. Sen Gupta, K. G. Bhattacharyya. (2008). Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. Journal of Environmental Management.87(1):46-58. DOI: 10.1016/s0960-8524(01)00118-3.
[44] F. Fu, Q. Wang. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management.92(3):407-418. DOI: 10.1016/s0960-8524(01)00118-3.
[45] W. Lei, D. Zhuobao, W. Zhongxuan. (2011). Experimental study on the adsorption of mercury with modification treatment rice husk ashes and scanning electron microscope analysis. Guangdong Chemical Industry.38:33-35. DOI: 10.1016/s0960-8524(01)00118-3.
[46] X. Li, Y. Xie, Yangyang. (2013). Study on adsorption capacity and kinetic characteristics of plant ash for Cd in sewage water. Journal of Northeast Agricultural University.44:39-42. DOI: 10.1016/s0960-8524(01)00118-3.
[47] B. He, Z. Yun, J. Shi, G. Jiang. et al.(2013). Research progress of heavy metal pollution in China: sources, analytical methods, status, and toxicity. Chinese Science Bulletin.58(2):134-140. DOI: 10.1016/s0960-8524(01)00118-3.
[48] S. Mishra, S. P. Dwivedi, R. K. Singh. (2010). A review on epigenetic effect of heavy metal carcinogens on human health. The Open Nutraceuticals Journal.3(1):188-193. DOI: 10.1016/s0960-8524(01)00118-3.
[49] S. K. Rautaray, B. C. Ghosh, B. N. Mittra. (2003). Effect of fly ash, organic wastes and chemical fertilizers on yield, nutrient uptake, heavy metal content and residual fertility in a rice–mustard cropping sequence under acid lateritic soils. Bioresource Technology.90(3):275-283. DOI: 10.1016/s0960-8524(01)00118-3.
文献评价指标
浏览 285次
下载全文 67次
评分次数 0次
用户评分 0.0分
分享 0次