首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2017 ,2017-02-23
Study of the Dynamic Uptake of Free Drug and Nanostructures for Drug Delivery Based on Bioluminescence Measurements
Research Article
Zhongjian Fang 1 , 2 , 3 Houchao Xu 4 Xiangjun Ji 5 Congbiao Liu 1 Kai Wang 6 Xiaoqing Qian 7 Wencong Zhou 1
Show affiliations
DOI:10.1155/2017/8542806
Received 2016-10-28, accepted for publication 2017-01-23, Published 2017-01-23
PDF
摘要

The past two decades have witnessed the great growth of the development of novel drug carriers. However, the releasing dynamics of drug from drug carriers in vivo and the interactions between cells and drug carriers remain unclear. In this paper, liposomes were prepared to encapsulate D-luciferin, which was the substrate of luciferase and served as a model drug. Based on the theoretical calculation of active loading, methods of preparation for liposomes were optimized. Only when D-luciferin was released from liposomes or taken in by the cells could bioluminescence be produced under the catalysis of luciferase. Models of multicellular tumor spheroid (MCTS) were built with 4T1-luc cells that expressed luciferase stably. The kinetic processes of uptake and distribution of free drugs and liposomal drugs were determined with models of cell suspension, monolayer cells, MCTS, and tumor-bearing nude mice. The technology platform has been demonstrated to be effective for the study of the distribution and kinetic profiles of various liposomes as drug delivery systems.

授权许可

Copyright © 2017 Zhongjian Fang et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Zhongjian Fang.School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 200237, China, sumhs.edu.cn;China Pharmaceutical University, Nanjing 211198, China, cpu.edu.cn;Health School Attached to Shanghai University of Medicine & Health Sciences, Shanghai 200237, China, sumhs.edu.cn.shilyvip@sina.com

推荐引用方式

Zhongjian Fang,Houchao Xu,Xiangjun Ji,Congbiao Liu,Kai Wang,Xiaoqing Qian,Wencong Zhou. Study of the Dynamic Uptake of Free Drug and Nanostructures for Drug Delivery Based on Bioluminescence Measurements. Journal of Nanomaterials ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
2

是否收藏?

参考文献
[1] J. Friedrich, C. Seidel, R. Ebner, L. A. Kunz-Schughart. et al.(2009). Spheroid-based drug screen: considerations and practical approach. Nature Protocols.4(3):309-324. DOI: 10.1016/j.bios.2016.04.067.
[2] J. Dong, P. Liu, A. Zhang, L. X. Xu. et al.Immunological response induced by alternated cooling and heating of breast tumor. :1491-1494. DOI: 10.1016/j.bios.2016.04.067.
[3] A. Ivascu, M. Kubbies. (2006). Rapid generation of single-tumor spheroids for high-throughput cell function and toxicity analysis. Journal of Biomolecular Screening.11(8):922-932. DOI: 10.1016/j.bios.2016.04.067.
[4] H. Song, O. David, S. Clejan, C. L. Giordano. et al.(2004). Spatial composition of prostate cancer spheroids in mixed and static cultures. Tissue Engineering.10(7-8):1266-1276. DOI: 10.1016/j.bios.2016.04.067.
[5] Y. Yang, Q. Shao, R. Deng, C. Wang. et al.(2012). In vitro and in vivo uncaging and bioluminescence imaging by using photocaged upconversion nanoparticles. Angewandte Chemie - International Edition.51(13):3125-3129. DOI: 10.1016/j.bios.2016.04.067.
[6] A. Kheirolomoom, D. E. Kruse, S. Qin, K. E. Watson. et al.(2010). Enhanced in vivo bioluminescence imaging using liposomal luciferin delivery system. Journal of Controlled Release.141(2):128-136. DOI: 10.1016/j.bios.2016.04.067.
[7] P. Balgavý, M. Dubničková, N. Kučerka, M. A. Kiselev. et al.(2001). Bilayer thickness and lipid interface area in unilamellar extruded 1,2-diacylphosphatidylcholine liposomes: A Small-Angle Neutron Scattering Study. Biochimica et Biophysica Acta—Biomembranes.1512(1):40-52. DOI: 10.1016/j.bios.2016.04.067.
[8] S. Song, D. Liu, J. Peng, Y. Sun. et al.(2008). Peptide ligand-mediated liposome distribution and targeting to EGFR expressing tumor in vivo. International Journal of Pharmaceutics.363(1-2):155-161. DOI: 10.1016/j.bios.2016.04.067.
[9] E. Faure-Fremit. (1910). Miochondria and liposomes. Comptes Rendus des Seances de la Societe de Biologie et de ses Filiales.68:537-539. DOI: 10.1016/j.bios.2016.04.067.
[10] H. Patel. (1990). Liposomes: a practical approach. FEBS Letters.275(1-2):242-243. DOI: 10.1016/j.bios.2016.04.067.
[11] G. Meroni, M. Rajabi, E. Santaniello. (2009). D-Luciferin, derivatives and analogues: synthesis and in vitro/in vivo luciferase-catalyzed bioluminescent activity. Arkivoc.2009(1):265-288. DOI: 10.1016/j.bios.2016.04.067.
[12] R. Shinde, J. Perkins, C. H. Contag. (2006). Luciferin derivatives for enhanced in vitro and in vivo bioluminescence assays. Biochemistry.45(37):11103-11112. DOI: 10.1016/j.bios.2016.04.067.
[13] W. Miska, R. Geiger. (1987). Synthesis and characterization of luciferin derivatives for use in bioluminescence enhanced enzyme immunoassays. New ultrasensitive detection systems for enzyme immunoassays. Journal of Clinical Chemistry and Clinical Biochemistry.25(1):23-30. DOI: 10.1016/j.bios.2016.04.067.
[14] J. Li, L. Chen, L. Du, M. Li. et al.(2013). Cage the firefly luciferin!—a strategy for developing bioluminescent probes. Chemical Society Reviews.42(2):662-676. DOI: 10.1016/j.bios.2016.04.067.
[15] S. Däster, N. Amatruda, D. Calabrese, P. Zajac. et al.(2014). Insight of 3D multicellular tumor spheroids for innovative culture models of potential relevance for the screening of anti-CRC compounds. Cancer Research.74(19). DOI: 10.1016/j.bios.2016.04.067.
[16] Z. Zheng, L. Wang, W. Tang, P. Chen. et al.(2016). Hydrazide d-luciferin for in vitro selective detection and intratumoral imaging of Cu2+. Biosensors and Bioelectronics.83:200-204. DOI: 10.1016/j.bios.2016.04.067.
[17] Y.-Q. Sun, J. Liu, P. Wang, J. Zhang. et al.(2012). D-luciferin analogues: a multicolor toolbox for bioluminescence imaging. Angewandte Chemie—International Edition.51(34):8428-8430. DOI: 10.1016/j.bios.2016.04.067.
[18] S. Ioka, T. Saitoh, S. Iwano, K. Suzuki. et al.(2016). Synthesis of firefly luciferin analogues and evaluation of the luminescent properties. Chemistry.22(27):9330-9337. DOI: 10.1016/j.bios.2016.04.067.
[19] D.-E. Lee, H. Koo, I.-C. Sun, J. H. Ryu. et al.(2012). Multifunctional nanoparticles for multimodal imaging and theragnosis. Chemical Society Reviews.41(7):2656-2672. DOI: 10.1016/j.bios.2016.04.067.
[20] G. Van Den Bogaart, J. T. Mika, V. Krasnikov, B. Poolman. et al.(2007). The lipid dependence of melittin action investigated by dual-color fluorescence burst analysis. Biophysical Journal.93(1):154-163. DOI: 10.1016/j.bios.2016.04.067.
[21] I. Mäger, K. Langel, T. Lehto, E. Eiríksdóttir. et al.(2012). The role of endocytosis on the uptake kinetics of luciferin-conjugated cell-penetrating peptides. Biochimica et Biophysica Acta—Biomembranes.1818(3):502-511. DOI: 10.1016/j.bios.2016.04.067.
[22] W. J. M. Mulder, G. J. Strijkers, G. A. F. Van Tilborg, D. P. Cormode. et al.(2009). Nanoparticulate assemblies of amphiphiles and diagnostically active materials for multimodality imaging. Accounts of Chemical Research.42(7):904-914. DOI: 10.1016/j.bios.2016.04.067.
[23] K.-H. Lee, S. S. Byun, J.-Y. Paik, S. Y. Lee. et al.(2003). Cell uptake and tissue distribution of radioiodine labelled D-luciferin: Implications for luciferase based gene imaging. Nuclear Medicine Communications.24(9):1003-1009. DOI: 10.1016/j.bios.2016.04.067.
[24] Z. Li, R. Zhao, X. Wu, Y. Sun. et al.(2005). Identification and characterization of a novel peptide ligand of epidermal growth factor receptor for targeted delivery of therapeutics. FASEB Journal.19(14):1978-1985. DOI: 10.1016/j.bios.2016.04.067.
[25] Y. Chen, D. Gao, H. Liu, S. Lin. et al.(2015). Drug cytotoxicity and signaling pathway analysis with three-dimensional tumor spheroids in a microwell-based microfluidic chip for drug screening. Analytica Chimica Acta.898:85-92. DOI: 10.1016/j.bios.2016.04.067.
[26] R. Akasov, D. Zaytseva-Zotova, S. Burov, M. Leko. et al.(2016). Formation of multicellular tumor spheroids induced by cyclic RGD-peptides and use for anticancer drug testing in vitro. International Journal of Pharmaceutics.506(1-2):148-157. DOI: 10.1016/j.bios.2016.04.067.
[27] T. T. Goodman, P. L. Olive, S. H. Pun. (2007). Increased nanoparticle penetration in collagenase-treated multicellular spheroids. International Journal of Nanomedicine.2(2):265-274. DOI: 10.1016/j.bios.2016.04.067.
[28] Y. Yuan, F. Wang, W. Tang, Z. Ding. et al.(2016). Intracellular self-assembly of cyclic d-luciferin nanoparticles for persistent bioluminescence imaging of fatty acid amide hydrolase. ACS Nano.10(7):7147-7153. DOI: 10.1016/j.bios.2016.04.067.
[29] Y. Tahara, Y. Fujiyoshi. (1994). A new method to measure bilayer thickness: cryo-electron microscopy of frozen hydrated liposomes and image simulation. Micron.25(2):141-149. DOI: 10.1016/j.bios.2016.04.067.
[30] Y. Tahara, M. Murata, S.-I. Ohnishi, Y. Fujiyoshi. et al.(1992). Functional signal peptide reduces bilayer thickness of phosphatidylcholine liposomes. Biochemistry.31(37):8747-8754. DOI: 10.1016/j.bios.2016.04.067.
文献评价指标
浏览 134次
下载全文 26次
评分次数 0次
用户评分 0.0分
分享 2次