首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2017 ,2017-02-23
An Electrochemical Study to Evaluate the Effect of Calcium Nitrite Inhibitor to Mitigate the Corrosion of Reinforcement in Sodium Chloride Contaminated Ca(OH)2 Solution
Research Article
Hwa-Sung Ryu 1 Jitendra Kumar Singh 2 Han-Seung Lee 2 Won-Jun Park 3
Show affiliations
DOI:10.1155/2017/6265184
Received 2016-11-25, accepted for publication 2017-02-02, Published 2017-02-02
PDF
摘要

The effect of calcium nitrite (Ca(NO2)2) was assessed by electrochemical means such as open circuit potential (OCP), electrochemical impedance spectroscopy (EIS), and potentiodynamic studies in saturated Ca(OH)2 solution contaminated with 0.99 and 7.91 g/L NaCl. The preliminary results of OCP showed that the potential is shifted towards positive (noble) side as content of inhibitor increased. The EIS results indicate that Ca(NO2)2 works effectively in reduction and initiation of corrosion of steel rebar in NaCl contaminated Ca(OH)2 solution. Potentiodynamic studies revealed the pitting tendency of steel rebar exposed in 0.99 g/L NaCl at [Cl−/ N O 2 - ] = 1.2 attributed to low conductivity of passive film which causes interference for Cl− ions attack during anodic polarization. The 85.75% efficiency is found in 0.99 g/L at [Cl−/ N O 2 - ] = 1.2. The Ca(NO2)2 inhibitor transformed the unstable iron oxides/hydroxides into stable and protective oxides/hydroxides due to its strong oxidizing nature. Therefore, this inhibitor is sufficiently and significantly reducing the corrosion of steel rebar at even its low concentration with 0.99 and 7.91 g/L NaCl solution.

授权许可

Copyright © 2017 Hwa-Sung Ryu et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Jitendra Kumar Singh.Department of Architectural Engineering, Hanyang University, ERICA, Ansan 15588, Republic of Korea, hanyang.ac.kr.jk200386@hanyang.ac.kr

推荐引用方式

Hwa-Sung Ryu,Jitendra Kumar Singh,Han-Seung Lee,Won-Jun Park. An Electrochemical Study to Evaluate the Effect of Calcium Nitrite Inhibitor to Mitigate the Corrosion of Reinforcement in Sodium Chloride Contaminated Ca(OH)2 Solution. Advances in Materials Science and Engineering ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
1

是否收藏?

参考文献
[1] Y. Zhou, Y. Zuoz. (2015). The passivation behavior of mild steel in CO saturated solution containing nitrite anions. Journal of the Electrochemical Society.162(1):C47-C54. DOI: 10.1179/000705970798324450.
[2] J. S. Reou, K. Y. Ann. (2008). The electrochemical assessment of corrosion inhibition effect of calcium nitrite in blended concretes. Materials Chemistry and Physics.109(2-3):526-533. DOI: 10.1179/000705970798324450.
[3] N. S. Berke. The effects of calcium nitrite and mix design on the corrosion resistance of steel in concrete (Part 2, Long-Term Results). :134-144. DOI: 10.1179/000705970798324450.
[4] O. S. B. Al-Amoudi, M. Maslehuddin, A. N. Lashari, A. A. Almusallam. et al.(2003). Effectiveness of corrosion inhibitors in contaminated concrete. Cement and Concrete Composites.25(4-5):439-449. DOI: 10.1179/000705970798324450.
[5] E. S. Ferreira, C. Giacomelli, F. C. Giacomelli, A. Spinelli. et al.(2004). Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel. Materials Chemistry and Physics.83(1):129-134. DOI: 10.1179/000705970798324450.
[6] N. S. Berke, A. Rosenberg. (1989). Technical review of calcium nitrite corrosion inhibitor in concrete. Transportation Research Record(1211):18-27. DOI: 10.1179/000705970798324450.
[7] Z. H. Dong, W. Shi, X. P. Guo. (2011). Initiation and repassivation of pitting corrosion of carbon steel in carbonated concrete pore solution. Corrosion Science.53(4):1322-1330. DOI: 10.1179/000705970798324450.
[8] M. Ormellese, M. Berra, F. Bolzoni, T. Pastore. et al.(2006). Corrosion inhibitors for chlorides induced corrosion in reinforced concrete structures. Cement and Concrete Research.36(3):536-547. DOI: 10.1179/000705970798324450.
[9] D. Jayaperumal. (2010). Effects of alcohol-based inhibitors on corrosion of mild steel in hydrochloric acid. Materials Chemistry and Physics.119(3):478-484. DOI: 10.1179/000705970798324450.
[10] C.-Q. Ye, R.-G. Hu, S.-G. Dong, X.-J. Zhang. et al.(2013). EIS analysis on chloride-induced corrosion behavior of reinforcement steel in simulated carbonated concrete pore solutions. Journal of Electroanalytical Chemistry.688:275-281. DOI: 10.1179/000705970798324450.
[11] Y. T. Tan, S. L. Wijesinghe, D. J. Blackwood. (2014). The inhibitive effect of bicarbonate and carbonate ions on carbon steel in simulated concrete pore solution. Corrosion Science.88:152-160. DOI: 10.1179/000705970798324450.
[12] M. Yadav, S. Kumar. (2014). Experimental, thermodynamic and quantum chemical studies on adsorption and corrosion inhibition performance of synthesized pyridine derivatives on N80 steel in HCl solution. Surface and Interface Analysis.46(4):254-268. DOI: 10.1179/000705970798324450.
[13] K. K. Sagoe-Crentsil, F. P. Glasser, J. T. S. Irvine. (1992). Electrochemical characteristics of reinforced concrete corrosion as determined by impedance spectroscopy. British Corrosion Journal.27(2):113-118. DOI: 10.1179/000705970798324450.
[14] K. Y. Ann, H. S. Jung, H. S. Kim, S. S. Kim. et al.(2006). Effect of calcium nitrite-based corrosion inhibitor in preventing corrosion of embedded steel in concrete. Cement and Concrete Research.36(3):530-535. DOI: 10.1179/000705970798324450.
[15] D. A. Jones. (1992). Principles and Prevention of Corrosion. DOI: 10.1179/000705970798324450.
[16] V. Saraswathy, H.-W. Song. (2007). Improving the durability of concrete by using inhibitors. Building and Environment.42(1):464-472. DOI: 10.1179/000705970798324450.
[17] H. Böhni, H. H. Uhlig. (1969). Environmental factors affecting the critical pitting potential of aluminum. Journal of the Electrochemical Society.116(7):906-910. DOI: 10.1179/000705970798324450.
[18] R. J. Craig, L. E. Wood. (1970). Effectiveness of Corrosion Inhibitors and Their Influence on the Physical Properties of Portland Cement Mortars. DOI: 10.1179/000705970798324450.
[19] N. S. Berke, M. C. Hicks. (2004). Predicting long-term durability of steel reinforced concrete with calcium nitrite corrosion inhibitor. Cement and Concrete Composites.26(3):191-198. DOI: 10.1179/000705970798324450.
[20] G. Trabanelli. (1986). Corrosion inhibitors. Corrosion Mechanisms. DOI: 10.1179/000705970798324450.
[21] H.-S. Lee, J. K. Singh, J. H. Park. (2016). Pore blocking characteristics of corrosion products formed on Aluminum coating produced by arc thermal metal spray process in 3.5 wt.
[22] NaCl solution. Construction and Building Materials.113:905-916. DOI: 10.1179/000705970798324450.
[23] M. B. Valcarce, M. Vázquez. (2009). Carbon steel passivity examined in solutions with a low degree of carbonation: the effect of chloride and nitrite ions. Materials Chemistry and Physics.115(1):313-321. DOI: 10.1179/000705970798324450.
[24] H.-S. Lee, J. K. Singh, M. A. Ismail, C. Bhattacharya. et al.(2016). Corrosion resistance properties of aluminum coating applied by arc thermal metal spray in SAE J2334 solution with exposure periods. Metals.6(3, article 55)-15. DOI: 10.1179/000705970798324450.
[25] L. Bertolini, F. Bolzoni, T. Pastore, P. Pedeferri. et al.(1996). Behaviour of stainless steel in simulated concrete pore solution. British Corrosion Journal.31(3):218-222. DOI: 10.1179/000705970798324450.
[26] H.-S. Ryu, J. K. Singh, H.-M. Yang, H.-S. Lee. et al.(2016). Evaluation of corrosion resistance properties of N, N′-Dimethyl ethanolamine corrosion inhibitor in saturated Ca(OH) solution with different concentrations of chloride ions by electrochemical experiments. Construction and Building Materials.114:223-231. DOI: 10.1179/000705970798324450.
[27] M. Moreno, W. Morris, M. G. Alvarez, G. S. Duffó. et al.(2004). Corrosion of reinforcing steel in simulated concrete pore solutions effect of carbonation and chloride content. Corrosion Science.46(11):2681-2699. DOI: 10.1179/000705970798324450.
[28] B. Cox, Y.-M. Wong. (1995). Simulating porous oxide films on zirconium alloys. Journal of Nuclear Materials.218(3):324-334. DOI: 10.1179/000705970798324450.
[29] M. Saremi, E. Mahallati. (2002). A study on chloride-induced depassivation of mild steel in simulated concrete pore solution. Cement and Concrete Research.32(12):1915-1921. DOI: 10.1179/000705970798324450.
[30] N. Imaz, M. Ostra, M. Vidal, J. A. Díez. et al.(2014). Corrosion behaviour of chromium coatings obtained by direct and reverse pulse plating electrodeposition in NaCl aqueous solution. Corrosion Science.78:251-259. DOI: 10.1179/000705970798324450.
[31] K. Y. Ann, H.-W. Song. (2007). Chloride threshold level for corrosion of steel in concrete. Corrosion Science.49(11):4113-4133. DOI: 10.1179/000705970798324450.
[32] J. M. Gaidis. (2004). Chemistry of corrosion inhibitors. Cement and Concrete Composites.26(3):181-189. DOI: 10.1179/000705970798324450.
[33] P. Gu, S. Elliott, R. Hristova, J. J. Beaudoin. et al.(1997). A study of corrosion inhibitor performance in chloride contaminated concrete by electrochemical impedance spectroscopy. ACI Materials Journal.94(5):385-395. DOI: 10.1179/000705970798324450.
[34] O. Girèienë, M. Samulevièienë, A. Sudavièius, R. Ramanauskas. et al.(2005). Efficiency of steel corrosion inhibitor calcium nitrite in alkaline solutions and concrete structures. Chemija.16:1-6. DOI: 10.1179/000705970798324450.
[35] W. D. Collins, R. E. Weyers, I. L. Al-Qadi. (1993). Chemical treatment of corroding steel reinforcement after removal of chloride-contaminated concrete. Corrosion.49(1):74-88. DOI: 10.1179/000705970798324450.
[36] N. S. Berke, W. R. Grace. (1987). The Effects of Calcium Nitrite and Mix Design on the Corrosion Resistance of Steel in Concrete, Part 2. DOI: 10.1179/000705970798324450.
[37] F. Martinez, R. Troconis. Efectos de los inhibidores ZnO y Ca(NO) y del agua del Lago de Maracaibo en las propiedades fisico quimicas del concreto. .I:397-403. DOI: 10.1179/000705970798324450.
[38] M. Criado, S. Martínez-Ramirez, S. Fajardo, P. P. Gõmez. et al.(2013). Corrosion rate and corrosion product characterisation using Raman spectroscopy for steel embedded in chloride polluted fly ash mortar. Materials and Corrosion.64(5):372-380. DOI: 10.1179/000705970798324450.
[39] S. M. Trépanier, B. B. Hope, C. M. Hansson. (2001). Corrosion inhibitors in concrete: part III. Effect on time to chloride-induced corrosion initiation and subsequent corrosion rates of steel in mortar. Cement and Concrete Research.31(5):713-718. DOI: 10.1179/000705970798324450.
[40] C. Monticelli, A. Frignani, A. Balbo, F. Zucchi. et al.(2011). Influence of two specific inhibitors on steel corrosion in a synthetic solution simulating a carbonated concrete with chlorides. Materials and Corrosion.62(2):178-186. DOI: 10.1179/000705970798324450.
[41] S. M. Trepanier, B. B. Hope, G. M. Hansson. (2001). Corrosion inhibitors in concrete: part III. Effect on time to chloride-induced corrosion in initiation and subsequent corrosion rates of steel in concrete. Cement and Concrete Research.31:713-718. DOI: 10.1179/000705970798324450.
[42] K. K. Sideris, A. E. Savva. (2005). Durability of mixtures containing calcium nitrite based corrosion inhibitor. Cement and Concrete Composites.27(2):277-287. DOI: 10.1179/000705970798324450.
[43] V. K. Gouda. (1970). Corrosion and corrosion inhibition of reinforcing steel: I. immersed in alkaline solutions. British Corrosion Journal.5(5):198-203. DOI: 10.1179/000705970798324450.
[44] M. Ramasubramanian, B. S. Haran, S. Popova, B. N. Popov. et al.(2001). Inhibiting action of calcium nitrite on carbon steel rebars. Journal of Materials in Civil Engineering.13(1):10-17. DOI: 10.1179/000705970798324450.
[45] M. B. Valcarce, C. López, M. Vázquez. (2012). The role of chloride, nitrite and carbonate ions on carbon steel passivity studied in simulating concrete pore solutions. Journal of the Electrochemical Society.159(5):C244-C251. DOI: 10.1179/000705970798324450.
[46] V. K. Gouda, W. Y. Halaka. (1970). Corrosion and corrosion inhibition of reinforcing steel II. Embedded in concrete. British Corrosion Journal.5(5):204-208. DOI: 10.1179/000705970798324450.
[47] D. A. Hausmann. (1967). Steel corrosion in concrete-how does it occur. Materials Protection.6:19-23. DOI: 10.1179/000705970798324450.
[48] A.-N. Al-Negheimish, A. Alhozaimy, R. R. Hussain, R. Al-Zaid. et al.(2014). Role of manganese sulfide inclusions in steel rebar in the formation and breakdown of passive films in concrete pore solutions. Corrosion.70(1):74-86. DOI: 10.1179/000705970798324450.
[49] W. Medford. (2014). Testing calcium nitrite corrosion inhibitor in concrete. Transportation Research Record.1795:62-65. DOI: 10.1179/000705970798324450.
[50] H. Zheng, W. Li, F. Ma, Q. Kong. et al.(2014). The performance of a surface-applied corrosion inhibitor for the carbon steel in saturated Ca(OH) solutions. Cement and Concrete Research.55:102-108. DOI: 10.1179/000705970798324450.
[51] H. Justnes. Corrosion inhibitors for reinforced concrete. :53-70. DOI: 10.1179/000705970798324450.
[52] T. de Rincon. (1988). O. Uso de los Inhibidores para el Control del Acero de Refuerzo de Concreto, VIII Reunion Latinoamericana de Electroquimica y Corrosion. DOI: 10.1179/000705970798324450.
[53] H. Ryu, J. K. Singh, H. Lee, M. A. Ismail. et al.(2017). Effect of LiNO inhibitor on corrosion characteristics of steel rebar in saturated Ca(OH) solution containing NaCl: an electrochemical study. Construction and Building Materials.133:387-396. DOI: 10.1179/000705970798324450.
[54] A. Królikowski, J. Kuziak. (2011). Impedance study on calcium nitrite as a penetrating corrosion inhibitor for steel in concrete. Electrochimica Acta.56(23):7845-7853. DOI: 10.1179/000705970798324450.
[55] S. Kumar, D. Sharma, P. Yadav, M. Yadav. et al.(2013). Experimental and quantum chemical studies on corrosion inhibition effect of synthesized organic compounds on N80 steel in hydrochloric acid. Industrial and Engineering Chemistry Research.52(39):14019-14029. DOI: 10.1179/000705970798324450.
[56] B. B. Hope, S. V. Thompson. (1993). Damage to concrete induced by calcium nitrite. ACI Materials Journal.92(5):529-531. DOI: 10.1179/000705970798324450.
[57] S. W. Dean. (1977). Electrochemical methods of corrosion testing. Electrochemical Techniques for Corrosion:52-60. DOI: 10.1179/000705970798324450.
[58] L. Mammoliti, C. M. Hansson, B. B. Hope. (1999). Corrosion inhibitors in concrete Part II: effect on chloride threshold values for corrosion of steel in synthetic pore solutions. Cement and Concrete Research.29(10):1583-1589. DOI: 10.1179/000705970798324450.
[59] G. Batis, K. K. Sideris, P. Pantazopoulou. (2004). Influence of calcium nitrite inhibitor on the durability of mortars under contaminated chloride and sulphate environments. Anti-Corrosion Methods and Materials.51(2):112-120. DOI: 10.1179/000705970798324450.
[60] L. Abosrra, M. Youseffi, A. F. Ashour. (2011). Effectiveness of calcium nitrite in retarding corrosion of steel in concrete. International Journal of Concrete Structures and Materials.5:65-73. DOI: 10.1179/000705970798324450.
[61] N. S. Berke, W. R. Grace. (1985). The effects of calcium nitrite and mix design on the corrosion resistance of steel in concrete, part 1. Corrosion/85. DOI: 10.1179/000705970798324450.
[62] N. Etteyeb, L. Dhouibi, M. Sanchez, C. Alonso. et al.(2007). Electrochemical study of corrosion inhibition of steel reinforcement in alkaline solutions containing phosphates based components. Journal of Materials Science.42(13):4721-4730. DOI: 10.1179/000705970798324450.
[63] V. T. Ngala, C. L. Page, M. M. Page. (2002). Corrosion inhibitor systems for remedial treatment of reinforced concrete. Part 1: calcium nitrite. Corrosion Science.44(9):2073-2087. DOI: 10.1179/000705970798324450.
[64] W. Hart, H. Voshardt. (1981). Influence of Ca (NO2)2 on Seawater Corrosion of Reinforcing Steel in Concrete, Part 2. DOI: 10.1179/000705970798324450.
[65] J. K. Singh, D. D. N. Singh. (2012). The nature of rusts and corrosion characteristics of low alloy and plain carbon steels in three kinds of concrete pore solution with salinity and different pH. Corrosion Science.56:129-142. DOI: 10.1179/000705970798324450.
[66] C. L. Page. (2007). Durability of Concrete and Cement Composites. DOI: 10.1179/000705970798324450.
文献评价指标
浏览 170次
下载全文 26次
评分次数 0次
用户评分 0.0分
分享 1次