首页 » 文章 » 文章详细信息
BioMed Research International Volume 2017 ,2017-02-14
Bioinformatics Analysis Reveals MicroRNAs Regulating Biological Pathways in Exercise-Induced Cardiac Physiological Hypertrophy
Research Article
Jiahong Xu 1 Yang Liu 1 Yuan Xie 1 Cuimei Zhao 1 Hongbao Wang 2
Show affiliations
DOI:10.1155/2017/2850659
Received 2016-09-30, accepted for publication 2016-12-20, Published 2016-12-20
PDF
摘要

Exercise-induced physiological cardiac hypertrophy is generally considered to be a type of adaptive change after exercise training and is beneficial for cardiovascular diseases. This study aims at investigating exercise-regulated microRNAs (miRNAs) and their potential biological pathways. Here, we collected 23 miRNAs from 8 published studies. MirPath v.3 from the DIANA tools website was used to execute the analysis, and TargetScan was used to predict the target genes. Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) analyses were performed to identify potential pathways and functional annotations associated with exercise-induced physiological cardiac hypertrophy. Various miRNA targets and molecular pathways, such as Fatty acid elongation, Arrhythmogenic right ventricular cardiomyopathy (ARVC), and ECM-receptor interaction, were identified. This study could prompt the understanding of the regulatory mechanisms underlying exercise-induced physiological cardiac hypertrophy.

授权许可

Copyright © 2017 Jiahong Xu et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The KEGG and GO pathways incorporated by downregulated microRNAs.

The KEGG and GO pathways incorporated by downregulated microRNAs.

The KEGG and GO pathways incorporated by upregulated microRNAs.

The KEGG and GO pathways incorporated by upregulated microRNAs.

通讯作者

1. Cuimei Zhao.Department of Cardiology, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China, tongji.edu.cn.zhaocuimei2000@126.com
2. Hongbao Wang.Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China, tongji.edu.cn.wanghongbao@tongji.edu.cn

推荐引用方式

Jiahong Xu,Yang Liu,Yuan Xie,Cuimei Zhao,Hongbao Wang. Bioinformatics Analysis Reveals MicroRNAs Regulating Biological Pathways in Exercise-Induced Cardiac Physiological Hypertrophy. BioMed Research International ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Samak, J. Fatullayev, A. Sabashnikov, M. Zeriouh. et al.(2016). Cardiac hypertrophy: an introduction to molecular and cellular basis. Medical Science Monitor Basic Research.22:75-79. DOI: 10.12659/msmbr.900437.
[2] I. Shimizu, T. Minamino. (2016). Physiological and pathological cardiac hypertrophy. Journal of Molecular and Cellular Cardiology.97:245-262. DOI: 10.12659/msmbr.900437.
[3] J. Roh, J. Rhee, V. Chaudhari, A. Rosenzweig. et al.(2016). The role of exercise in cardiac aging: from physiology to molecular mechanisms. Circulation Research.118(2):279-295. DOI: 10.12659/msmbr.900437.
[4] X. Liu, J. Xiao, H. Zhu, X. Wei. et al.(2015). MiR-222 is necessary for exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell Metabolism.21(4):584-595. DOI: 10.12659/msmbr.900437.
[5] S. Gielen, M. H. Laughlin, C. O'Conner, D. J. Duncker. et al.(2015). Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations. Progress in Cardiovascular Diseases.57(4):347-355. DOI: 10.12659/msmbr.900437.
[6] T. Fernandes, V. G. Baraúna, C. E. Negrão, M. Ian Phillips. et al.(2015). Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs. American Journal of Physiology—Heart and Circulatory Physiology.309(4):H543-H552. DOI: 10.12659/msmbr.900437.
[7] T. Fernandes, N. Y. Hashimoto, F. C. Magalhães, F. B. Fernandes. et al.(2011). Aerobic exercise training-induced left ventricular hypertrophy involves regulatory MicroRNAs, decreased angiotensin-converting enzyme-angiotensin II, and synergistic regulation of angiotensin-converting enzyme 2-angiotensin (1-7). Hypertension.58(2):182-189. DOI: 10.12659/msmbr.900437.
[8] T. Matsuzaka, H. Shimano. (2009). Elovl6: a new player in fatty acid metabolism and insulin sensitivity. Journal of Molecular Medicine.87(4):379-384. DOI: 10.12659/msmbr.900437.
[9] D. Lv, J. Liu, C. Zhao, Q. Sun. et al.(2015). Targeting microRNAs in pathological hypertrophy and cardiac failure. Mini-Reviews in Medicinal Chemistry.15(6):475-478. DOI: 10.12659/msmbr.900437.
[10] U. P. R. Soci, T. Fernandes, N. Y. Hashimoto, G. F. Mota. et al.(2011). MicroRNAs 29 are involved in the improvement of ventricular compliance promoted by aerobic exercise training in rats. Physiological Genomics.43(11):665-673. DOI: 10.12659/msmbr.900437.
[11] L. Tao, Y. Bei, P. Chen, Z. Lei. et al.(2016). Crucial role of miR-433 in regulating cardiac fibrosis. Theranostics.6(12):2068-2083. DOI: 10.12659/msmbr.900437.
[12] M.-Q. Dang, X.-C. Zhao, S. Lai, X. Wang. et al.(2015). Gene expression profile in the early stage of angiotensin ii-induced cardiac remodeling: a time series microarray study in a mouse model. Cellular Physiology and Biochemistry.35(2):467-476. DOI: 10.12659/msmbr.900437.
[13] C. Y. Tan, S. Virtue, G. Bidault, M. Dale. et al.(2015). Brown adipose tissue thermogenic capacity is regulated by Elovl6. Cell Reports.13(10):2039-2047. DOI: 10.12659/msmbr.900437.
[14] T. M. H. Eijsvogels, K. P. George, P. D. Thompson. (2016). Cardiovascular benefits and risks across the physical activity continuum. Current Opinion in Cardiology.31(5):566-571. DOI: 10.12659/msmbr.900437.
[15] J. Wang, O. W. Liew, A. M. Richards, Y.-T. Chen. et al.(2016). Overview of microRNAs in cardiac hypertrophy, fibrosis, and apoptosis. International Journal of Molecular Sciences.17(5, article 749). DOI: 10.12659/msmbr.900437.
[16] N. C. Martinelli, C. R. Cohen, K. G. Santos, M. A. Castro. et al.(2014). An analysis of the global expression of microRNAs in an experimental model of physiological left ventricular hypertrophy. PLOS ONE.9(4). DOI: 10.12659/msmbr.900437.
[17] S. Ramasamy, G. Velmurugan, K. S. Rajan, T. Ramprasath. et al.(2015). MiRNAs with apoptosis regulating potential are differentially expressed in chronic exercise-induced physiologically hypertrophied hearts. PLoS ONE.10(3). DOI: 10.12659/msmbr.900437.
[18] B. Pinamonti, F. Brun, L. Mestroni, G. Sinagra. et al.(2014). Arrhythmogenic right ventricular cardiomyopathy: from genetics to diagnostic and therapeutic challenges. World Journal of Cardiology.6(12):1234-1244. DOI: 10.12659/msmbr.900437.
[19] Z. Ma, J. Qi, S. Meng, B. Wen. et al.(2013). Swimming exercise training-induced left ventricular hypertrophy involves microRNAs and synergistic regulation of the PI3K/AKT/mTOR signaling pathway. European Journal of Applied Physiology.113(10):2473-2486. DOI: 10.12659/msmbr.900437.
[20] S. F. S. Melo, V. G. Barauna, M. A. Jr. Carneiro, L. H. M. Bozi. et al.(2015). Resistance training regulates cardiac function through modulation of miRNA-214. International Journal of Molecular Sciences.16(4):6855-6867. DOI: 10.12659/msmbr.900437.
[21] F. M. Cruz, D. Sanz-Rosa, M. Roche-Molina, J. García-Prieto. et al.(2015). Exercise triggers ARVC phenotype in mice expressing a disease-causing mutated version of human plakophilin-2. Journal of the American College of Cardiology.65(14):1438-1450. DOI: 10.12659/msmbr.900437.
[22] A. Carè, D. Catalucci, F. Felicetti, D. Bonci. et al.(2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine.13(5):613-618. DOI: 10.12659/msmbr.900437.
文献评价指标
浏览 182次
下载全文 30次
评分次数 0次
用户评分 0.0分
分享 0次