首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2017 ,2017-01-22
In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils
Research Article
Muhammad Nadeem Amin 1 Yi Li 1 Xingmei Lu 1
Show affiliations
DOI:10.1155/2017/5612852
Received 2016-08-18, accepted for publication 2016-09-27, Published 2016-09-27
PDF
摘要

Lighter tars are largely useful in chemical industries but their quantity is quite little. Catalytic cracking is applied to improve the yield of light tars during pyrolysis. Consequently, in situ upgrading technique through a MoS2 catalyst has been explored in this research work. MoS2 catalyst is useful for the conversion of high energy cost into low energy cost. The variations in coal pyrolysis tar without and with catalyst were determined. Meanwhile, the obtained tar was analyzed using simulated distillation gas chromatograph and Elemental Analyzer. Consequently, the catalyst reduced the pitch contents and increased the fraction of light tar from 50 to 60 wt.% in coal pyrolysis tar. MoS2 catalyst increased the liquid yield from 18 to 33 (wt.%, db) and decreased gas yield from 27 to 12 (wt.%, db) compared to coal without catalyst. Moreover, it increased H content and hydrogen-to-carbon ratio by 7.9 and 3.3%, respectively, and reduced the contents of nitrogen, sulphur, and oxygen elements by 8.1%, 15.2%, and 23.9%, respectively, in their produced tars compared to coal without catalyst.

授权许可

Copyright © 2017 Muhammad Nadeem Amin et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

A schematic figure of the experimental apparatus. ( 1 ) nitrogen cylinder, ( 2 ) flow controller, ( 3 ) electric ring furnace, ( 4 ) coal layer, ( 5 ) catalyst layer, ( 6 ) thermocouple, ( 7 ) condenser, (8) conical flask, (9) acetone traps, (10) silica gel, (11) gas collector, and (12) measuring cylinder.

Tar yield based on temperatures without catalyst.

Pyrolysis product yields based on temperatures without catalyst.

Pyrolysis product yields without and with catalyst.

Gas components without and with catalyst.

Tar fraction as a function of simulated distillation temperature without and with catalyst.

Tar composition of coal without and with catalyst.

Yields and fraction of coal pyrolysis tar without and with catalyst.

XRD pattern of MoS2 catalyst.

SEM diagrams of fresh MoS2 catalysts (a) and spent MoS2 catalyst (b).

SEM diagrams of fresh MoS2 catalysts (a) and spent MoS2 catalyst (b).

TEM diagrams of fresh MoS2 catalysts (a) and spent MoS2 catalyst (b).

TEM diagrams of fresh MoS2 catalysts (a) and spent MoS2 catalyst (b).

通讯作者

Yi Li.Beijing Key Laboratory of Ionic Liquids Clean Process, Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China, cas.cn.liyi@ipe.ac.cn

推荐引用方式

Muhammad Nadeem Amin,Yi Li,Xingmei Lu. In Situ Catalytic Pyrolysis of Low-Rank Coal for the Conversion of Heavy Oils into Light Oils. Advances in Materials Science and Engineering ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Z. Ma, X. Ma, J. Luo, L. Xu. et al.(2012). Catalytic hydropyrolysis of five Chinese coals. Energy and Fuels.26(1):511-517. DOI: 10.1021/ef401424p.
[2] P. Wang, L. Jin, J. Liu, S. Zhu. et al.(2013). Analysis of coal tar derived from pyrolysis at different atmospheres. Fuel.104:14-21. DOI: 10.1021/ef401424p.
[3] A. Tahmasebi, J. Yu, Y. Han, F. Yin. et al.(2012). Study of chemical structure changes of chinese lignite upon drying in superheated steam, microwave, and hot air. Energy and Fuels.26(6):3651-3660. DOI: 10.1021/ef401424p.
[4] S. Li, J. Chen, T. Hao, W. Liang. et al.(2013). Pyrolysis of Huang Tu Miao coal over faujasite zeolite and supported transition metal catalysts. Journal of Analytical and Applied Pyrolysis.102:161-169. DOI: 10.1021/ef401424p.
[5] J. Shao, R. Yan, H. Chen, H. Yang. et al.(2010). Catalytic effect of metal oxides on pyrolysis of sewage sludge. Fuel Processing Technology.91(9):1113-1118. DOI: 10.1021/ef401424p.
[6] H.-Y. Wang, T.-T. Jiao, Z.-X. Li, C.-S. Li. et al.(2014). Study on palm oil hydrogenation for clean fuel over Ni-Mo-W/-AlO-ZSM-5 catalyst. Fuel Processing Technology.139:91-99. DOI: 10.1021/ef401424p.
[7] J. Wang, X. Lu, J. Yao, W. Lin. et al.(2005). Experimental study of coal topping process in a downer reactor. Industrial and Engineering Chemistry Research.44(3):463-470. DOI: 10.1021/ef401424p.
[8] L. Devi, K. J. Ptasinski, F. J. J. G. Janssen. (2002). A review of the primary measures for tar elimination in biomass gasification processes. Biomass and Bioenergy.24(2):125-140. DOI: 10.1021/ef401424p.
[9] H. Wang, F. Dai, Z. Li, C. Li. et al.(2015). Upgrading shale oil distillation to clean fuel by coupled hydrogenation and ring opening reaction of aromatics on W–Ni/-AlO catalyst. Energy and Fuels.29(8):4902-4910. DOI: 10.1021/ef401424p.
[10] N. Wang, J. Yu, A. Tahmasebi, Y. Han. et al.(2014). Experimental study on microwave pyrolysis of an Indonesian low-rank coal. Energy & Fuels.28(1):254-263. DOI: 10.1021/ef401424p.
[11] X. Qu, P. Liang, Z. Wang, R. Zhang. et al.(2011). Pilot development of polygeneration process of circulating fluidized bed combustion combined with coal pyrolysis. Chemical Engineering & Technology.34(1):61-68. DOI: 10.1021/ef401424p.
[12] L. Jin, X. Zhou, X. He, H. Hu. et al.(2013). Integrated coal pyrolysis with methane aromatization over Mo/HZSM-5 for improving tar yield. Fuel.114:187-190. DOI: 10.1021/ef401424p.
[13] J. Yu, A. Tahmasebi, Y. Han, F. Yin. et al.(2013). A review on water in low rank coals: the existence, interaction with coal structure and effects on coal utilization. Fuel Processing Technology.106:9-20. DOI: 10.1021/ef401424p.
[14] J. Han, H. Kim. (2008). The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renewable and Sustainable Energy Reviews.12(2):397-416. DOI: 10.1021/ef401424p.
[15] D. I. Cliff, K. R. Doolan, J. C. Mackie, R. J. Tyler. et al.(1984). Products from rapid heating of a brown coal in the temperature range 400–2300 °C. Fuel.63(3):394-400. DOI: 10.1021/ef401424p.
[16] L. Li, K. Morishita, H. Mogi, K. Yamasaki. et al.(2010). Low-temperature gasification of a woody biomass under a nickel-loaded brown coal char. Fuel Processing Technology.91(8):889-894. DOI: 10.1021/ef401424p.
[17] R. J. Tyler. (1979). Flash pyrolysis of coals. 1. Devolatilization of a Victorian brown coal in a small fluidized-bed reactor. Fuel.58(9):680-686. DOI: 10.1021/ef401424p.
[18] G. Duman, M. Pala, S. Ucar, J. Yanik. et al.(2013). Two-step pyrolysis of safflower oil cake. Journal of Analytical and Applied Pyrolysis.103:352-361. DOI: 10.1021/ef401424p.
[19] W. Li, N. Wang, B. Li. (2002). Process analysis of catalytic multi-stage hydropyrolysis of lignite. Fuel.81(11-12):1491-1497. DOI: 10.1021/ef401424p.
[20] J. Liu, H. Hu, L. Jin, P. Wang. et al.(2010). Integrated coal pyrolysis with CO2 reforming of methane over Ni/MgO catalyst for improving tar yield. Fuel Processing Technology.91(4):419-423. DOI: 10.1021/ef401424p.
[21] J. Han, X. Wang, J. Yue, S. Gao. et al.(2014). Catalytic upgrading of coal pyrolysis tar over char-based catalysts. Fuel Processing Technology.122:98-106. DOI: 10.1021/ef401424p.
[22] M. N. Amin, Y. Li, R. Razzaq, X. Lu. et al.(2016). Pyrolysis of low rank coal by nickel based zeolite catalysts in the two-staged bed reactor. Journal of Analytical and Applied Pyrolysis.118:54-62. DOI: 10.1021/ef401424p.
[23] G. Li, L. Yan, R. Zhao, F. Li. et al.(2014). Improving aromatic hydrocarbons yield from coal pyrolysis volatile products over HZSM-5 and Mo-modified HZSM-5. Fuel.130:154-159. DOI: 10.1021/ef401424p.
[24] P. Liang, Z. Wang, J. Bi. (2007). Process characteristics investigation of simulated circulating fluidized bed combustion combined with coal pyrolysis. Fuel Processing Technology.88(1):23-28. DOI: 10.1021/ef401424p.
[25] M. Karthikeyan, W. Zhonghua, A. S. Mujumdar. (2009). Low-Rank coal drying technologies—current status and new developments. Drying Technology.27(3):403-415. DOI: 10.1021/ef401424p.
[26] D. Velegol, M. Gautam, A. Shamsi. (1997). Catalytic cracking of a coal tar in a fluid bed reactor. Powder Technology.93(2):93-100. DOI: 10.1021/ef401424p.
[27] W. Li, N. Wang, B. Li. (2003). Product analysis of catalytic multi-stage hydropyrolysis of lignite. Fuel.82(5):569-573. DOI: 10.1021/ef401424p.
[28] L. Yan, X. Kong, R. Zhao, F. Li. et al.(2015). Catalytic upgrading of gaseous tars over zeolite catalysts during coal pyrolysis. Fuel Processing Technology.138:424-429. DOI: 10.1021/ef401424p.
[29] C. Li, K. Suzuki. (2010). Resources, properties and utilization of tar. Resources, Conservation and Recycling.54(11):905-915. DOI: 10.1021/ef401424p.
[30] T. Kan, X. Sun, H. Wang, C. Li. et al.(2012). Production of gasoline and diesel from coal tar via its catalytic hydrogenation in serial fixed beds. Energy & Fuels.26(6):3604-3611. DOI: 10.1021/ef401424p.
[31] S. J. Juutilainen, P. A. Simell, A. O. I. Krause. (2006). Zirconia: selective oxidation catalyst for removal of tar and ammonia from biomass gasification gas. Applied Catalysis B: Environmental.62(1-2):86-92. DOI: 10.1021/ef401424p.
[32] T. Kan, H. Wang, H. He, C. Li. et al.(2011). Experimental study on two-stage catalytic hydroprocessing of middle-temperature coal tar to clean liquid fuels. Fuel.90(11):3404-3409. DOI: 10.1021/ef401424p.
[33] X. Zou, J. Yao, X. Yang, W. Song. et al.(2007). Catalytic effects of metal chlorides on the pyrolysis of lignite. Energy & Fuels.21(2):619-624. DOI: 10.1021/ef401424p.
[34] C. Bergins, S. Berger, K. Strauß. (1999). Dewatering of fossil fuels and suspensions of ultrafine particles by mechanical/thermal dewatering. Chemical Engineering and Technology.22(11):923-927. DOI: 10.1021/ef401424p.
[35] A. V. Bridgwater. (1995). The technical and economic feasibility of biomass gasification for power generation. Fuel.74(5):631-653. DOI: 10.1021/ef401424p.
[36] Z. Tingyu, Z. Shouyu, H. Jiejie, W. Yang. et al.(2000). Effect of calcium oxide on pyrolysis of coal in a fluidized bed. Fuel Processing Technology.64(1):271-284. DOI: 10.1021/ef401424p.
[37] T. Kimura, T. Miyazawa, J. Nishikawa, S. Kado. et al.(2006). Development of Ni catalysts for tar removal by steam gasification of biomass. Applied Catalysis B: Environmental.68(3-4):160-170. DOI: 10.1021/ef401424p.
文献评价指标
浏览 158次
下载全文 47次
评分次数 0次
用户评分 0.0分
分享 0次