首页 » 文章 » 文章详细信息
International Journal of Genomics Volume 2017 ,2017-01-12
Development of a New Marker System for Identification of Spirodela polyrhiza and Landoltia punctata
Research Article
Bo Feng 1 Yang Fang 1 , 2 Zhibin Xu 1 Chao Xiang 1 Chunhong Zhou 1 Fei Jiang 1 Tao Wang 1 Hai Zhao 1 , 2
Show affiliations
DOI:10.1155/2017/5196763
Received 2016-08-12, accepted for publication 2016-11-16, Published 2016-11-16
PDF
摘要

Lemnaceae (commonly called duckweed) is an aquatic plant ideal for quantitative analysis in plant sciences. Several species of this family represent the smallest and fastest growing flowering plants. Different ecotypes of the same species vary in their biochemical and physiological properties. Thus, selecting of desirable ecotypes of a species is very important. Here, we developed a simple and rapid molecular identification system for Spirodela polyrhiza and Landoltia punctata based on the sequence polymorphism. First, several pairs of primers were designed and three markers were selected as good for identification. After PCR amplification, DNA fragments (the combination of three PCR products) in different duckweeds were detected using capillary electrophoresis. The high-resolution capillary electrophoresis displayed high identity to the sequencing results. The combination of the PCR products containing several DNA fragments highly improved the identification frequency. These results indicate that this method is not only good for interspecies identification but also ideal for intraspecies distinguishing. Meanwhile, 11 haplotypes were found in both the S. polyrhiza and L. punctata ecotypes. The results suggest that this marker system is useful for large-scale identification of duckweed and for the screening of desirable ecotypes to improve the diverse usage in duckweed utilization.

授权许可

Copyright © 2017 Bo Feng et al. 2017
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Electrophoresis of the PCR products amplified from duckweed (Landoltia punctata ecotype ZH0001-S-0) with the designed three pairs of primers in an agarose gel. M: DNA ladder Marker III (100, 200, 500, 750, 1,000, 2,000, 3,000, and 5,000 bp; Tiangen Biotech Co., Ltd.). Line 1: primers SC19/20. Line 2: primers SC35/36. Line 3: primers SC09/10.

Electropherograms showing capillary electrophoresis separation of the PCR product fragments amplified from ecotypes with the three primers. The horizontal axis displays the size of the detected PCR product fragments, while the vertical axis presents the intensity of the signal (i.e., the indicator of concentration of fragments in the PCR products). The orange peaks match the standard fragments in the GeneScan 500 LIZ size standard, while the blue ones represent the PCR products fragments amplified from different ecotypes. The numbers on the horizontal axis represent the size of the corresponding peak in the GeneScan 500 LIZ size standard (orange). “LH” represents Landoltia punctata haplotype number and “SH” represents Spirodela polyrhiza haplotype number. Different haplotypes displayed different types of blue peaks (DNA fragments) and combinations.

通讯作者

Hai Zhao.Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China, cas.cn;Chengdu University, Chengdu 610106, China, cdu.edu.cn.zhaohai@cib.ac.cn

推荐引用方式

Bo Feng,Yang Fang,Zhibin Xu,Chao Xiang,Chunhong Zhou,Fei Jiang,Tao Wang,Hai Zhao. Development of a New Marker System for Identification of Spirodela polyrhiza and Landoltia punctata. International Journal of Genomics ,Vol.2017(2017)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] E. V. Martirosyan, N. N. Ryzhova, K. G. Skryabin, E. Z. Kochieva. et al.(2008). RAPD analysis of genome polymorphism in the family Lemnaceae. Russian Journal of Genetics.44(3):360-364. DOI: 10.1086/314298.
[2] D. Vaughan, R. G. Baker. (1994). Influence of nutrients on the development of gibbosity in fronds of the duckweed L. Journal of Experimental Botany.45(270):129-133. DOI: 10.1086/314298.
[3] W. Wang, Y. Wu, Y. Yan, M. Ermakova. et al.(2010). DNA barcoding of the , a family of aquatic monocots. BMC Plant Biology.10:205-216. DOI: 10.1086/314298.
[4] H. Xue, Y. Xiao, Y. Jin, X. Li. et al.(2012). Genetic diversity and geographic differentiation analysis of duckweed using inter-simple sequence repeat markers. Molecular Biology Reports.39(1):547-554. DOI: 10.1086/314298.
[5] D. H. Les, E. Landolt, D. J. Crawford. (1997). Systematics of the Lemnaceae (duckweeds): inferences from micromolecular and morphological data. Plant Systematics and Evolution.204(3-4):161-177. DOI: 10.1086/314298.
[6] D. J. Crawford, E. Landolt, D. H. Les, J. K. Archibald. et al.(2005). Allozyme variation within and divergence between and : systematic and biogeographic implications. Aquatic Botany.83(2):119-128. DOI: 10.1086/314298.
[7] R. Vunsh, J. Li, U. Hanania, M. Edelman. et al.(2007). High expression of transgene protein in Spirodela. Plant Cell Reports.26(9):1511-1519. DOI: 10.1086/314298.
[8] M. Edelman, R. Vunsh, J. Li, U. Hanania. et al.(2003). Transgenic Spirodela: a unique, low-risk, plant biotechnology system. Plant Biology 2003, Section: Biotech Risk Assessment. Proceedings of the Annual Meeting of the American Society of Plant Biologists, Honululu, Hawaii:25-30. DOI: 10.1086/314298.
[9] D. J. Crawford, E. Landolt, D. H. Les, R. T. Kimball. et al.(2001). Allozyme studies in : variation and relationships in sections and. Taxon.50(4):987-999. DOI: 10.1086/314298.
[10] S. Rival, J.-P. Wisniewski, A. Langlais, H. Kaplan. et al.(2008). Spirodela (duckweed) as an alternative production system for pharmaceuticals: a case study, aprotinin. Transgenic Research.17(4):503-513. DOI: 10.1086/314298.
[11] . DOI: 10.1086/314298.
[12] W. H. Cui, J. L. Xu, J. J. Cheng, A. M. Stomp. et al.(2010). Growing duckweed for bioethanol production. An ASABE Meeting Presentation. DOI: 10.1086/314298.
[13] E. Landolt. (1986). The Family of Lemnaceae—A Monographic Study, Vol.1. DOI: 10.1086/314298.
[14] G. Oron, H. Willers. (1989). Effect of wastes quality on treatment efficiency with duckweed. Water Science and Technology.21(6-7):639-645. DOI: 10.1086/314298.
[15] E. Landolt. (1986). The family of Lemnaceae monographic study. Veroeffentlichungen des Geobotanischen Institutes der ETH, Stiftung Rubel, Zurich.71(1):15-71. DOI: 10.1086/314298.
[16] D. H. Les, D. J. Crawford, E. Landolt, J. D. Gabel. et al.(2002). Phylogeny and systematics of Lemnaceae, the duckweed family. Systematic Botany.27(2):221-240. DOI: 10.1086/314298.
[17] J. J. Cheng, A.-M. Stomp. (2009). Growing Duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed. Clean—Soil, Air, Water.37(1):17-26. DOI: 10.1086/314298.
[18] G. D. Lemon, U. Posluszny. (2000). Comparative shoot development and evolution in the Lemnaceae. International Journal of Plant Sciences.161(5):733-748. DOI: 10.1086/314298.
[19] J. E. Vermaat, M. K. Hanif. (1998). Performance of common duckweed species () and the waterfern on different types of waste water. Water Research.32(9):2569-2576. DOI: 10.1086/314298.
[20] D. Porath, B. Hepher, A. Koton. (1979). Duckweed as an aquatic crop: evaluation of clones for aquaculture. Aquatic Botany.7:273-278. DOI: 10.1086/314298.
文献评价指标
浏览 69次
下载全文 15次
评分次数 0次
用户评分 0.0分
分享 0次