首页 » 文章 » 文章详细信息
Advances in Mathematical Physics Volume 2016 ,2016-12-15
The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation
Research Article
Hongwei Yang 1 Yong Zhang 1 Xiaoen Zhang 1 Xin Chen 1 Zhenhua Xu 2 , 3
Show affiliations
DOI:10.1155/2016/7241625
Received 2016-09-07, accepted for publication 2016-11-10, Published 2016-11-10
PDF
摘要

The exact rational solutions, quasi-periodic wave solutions, and N-soliton solutions of 3 + 1 dimensional Jimbo-Miwa equation are acquired, respectively, by using the Hirota method, whereafter the rational solutions are also called algebraic solitary waves solutions and used to describe the squall lines phenomenon and explained possible formation mechanism of the rainstorm formation which occur in the atmosphere, so the study on the rational solutions of soliton equations has potential application value in the atmosphere field; the soliton fission and fusion are described based on the resonant solution which is a special form of the N-soliton solutions. At last, the interactions of the solitons are shown with the aid of N-soliton solutions.

授权许可

Copyright © 2016 Hongwei Yang et al. 2016
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表
通讯作者

Zhenhua Xu.Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China, cas.cn;Function Laboratory for Ocean Dynamics and Climate, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.xzh0532@sina.com

推荐引用方式

Hongwei Yang,Yong Zhang,Xiaoen Zhang,Xin Chen,Zhenhua Xu. The Rational Solutions and Quasi-Periodic Wave Solutions as well as Interactions of N-Soliton Solutions for 3 + 1 Dimensional Jimbo-Miwa Equation. Advances in Mathematical Physics ,Vol.2016(2016)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] C.-G. Shi, B.-Z. Zhao, W.-X. Ma. (2015). Exact rational solutions to a Boussinesq-like equation in -dimensions. Applied Mathematics Letters.48:170-176. DOI: 10.1017/cbo9780511623998.
[2] H. Dong, Y. Zhang, Y. Zhang, B. Yin. et al.(2014). Generalized bilinear differential operators, binary bell polynomials, and exact periodic wave solution of Boiti-Leon-Manna-Pempinelli Equation. Abstract and Applied Analysis.2014-6. DOI: 10.1017/cbo9780511623998.
[3] Y. H. Wang, Y. Chen. (2012). Integrability of the modified generalised Vakhnenko equation. Journal of Mathematical Physics.53(12)-20. DOI: 10.1017/cbo9780511623998.
[4] W.-X. Ma, Y. C. You. (2005). Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions. Transactions of the American Mathematical Society.357(5):1753-1778. DOI: 10.1017/cbo9780511623998.
[5] L. Zhang, C. M. Khalique. (2014). Traveling wave solutions and infinite-dimensional linear spaces of multiwave solutions to Jimbo-Miwa equation. Abstract and Applied Analysis.2014-7. DOI: 10.1017/cbo9780511623998.
[6] A. Chen, W. Zhu, Z. Qiao, W. Huang. et al.(2014). Algebraic traveling wave solutions of a non-local hydrodynamic-type model. Mathematical Physics, Analysis and Geometry.17(3-4):465-482. DOI: 10.1017/cbo9780511623998.
[7] H. H. Dong, Y. F. Zhang. (2015). Exact periodic wave solution of extended -dimensional shallow water wave equation with generalized D operator. Communications in Theoretical Physics.63(4):401. DOI: 10.1017/cbo9780511623998.
[8] A.-M. Wazwaz. (2008). New solutions of distinct physical structures to high-dimensional nonlinear evolution equations. Applied Mathematics and Computation.196(1):363-370. DOI: 10.1017/cbo9780511623998.
[9] J. B. Li, Z. J. Qiao. (2015). Bifurcation and traveling wave solutions for the Fokas equation. International Journal of Bifurcation and Chaos.25(10)-13. DOI: 10.1017/cbo9780511623998.
[10] R. M. Miura. (1978). Bäcklund Transformations. DOI: 10.1017/cbo9780511623998.
[11] C. Rogers, W. F. Shadwick. (1982). Bäcklund Transformations and Their Applications. DOI: 10.1017/cbo9780511623998.
[12] W.-X. Ma, J.-H. Lee. (2009). A transformed rational function method and exact solutions to the dimensional Jimbo-Miwa equation. Chaos, Solitons & Fractals.42(3):1356-1363. DOI: 10.1017/cbo9780511623998.
[13] A.-M. Wazwaz. (2008). Multiple-soliton solutions for the Calogero-Bogoyavlenskii-Schiff, Jimbo-Miwa and YTSF equations. Applied Mathematics and Computation.203(2):592-597. DOI: 10.1017/cbo9780511623998.
[14] E. Fan. (2011). New bilinear Bäcklund transformation and Lax pair for the supersymmetric two-Boson equation. Studies in Applied Mathematics.127(3):284-301. DOI: 10.1017/cbo9780511623998.
[15] M. J. Ablowitz, P. A. Clarkson. (1991). Solitons, Nonlinear Evolution Equations and Inverse Scattering.149. DOI: 10.1017/cbo9780511623998.
[16] Y. H. Wang, Y. Chen. (2011). Binary bell polynomials, bilinear approach to exact periodic wave solutions of -dimensional nonlinear evolution equations. Communications in Theoretical Physics.56(4):672. DOI: 10.1017/cbo9780511623998.
[17] X. Lü, W.-X. Ma, S.-T. Chen, C. M. Khalique. et al.(2016). A note on rational solutions to a Hirota-Satsuma-like equation. Applied Mathematics Letters.58:13-18. DOI: 10.1017/cbo9780511623998.
[18] Y.-H. Wang, Y. Chen. (2012). Bäcklund transformations and solutions of a generalized Kadomtsev-Petviashvili equation. Communications in Theoretical Physics.57(2):217-222. DOI: 10.1017/cbo9780511623998.
[19] Y. Zhang, W.-X. Ma. (2015). Rational solutions to a KdV-like equation. Applied Mathematics and Computation.256:252-256. DOI: 10.1017/cbo9780511623998.
[20] Y. F. Zhang, W. X. Ma. (2015). A study on rational solutions to a KP-like equation. Zeitschrift für Naturforschung A.70(4):263. DOI: 10.1017/cbo9780511623998.
[21] R. Hirota. (1971). Exact solution of the Korteweg-de Vries equation for multiple Collisions of solitons. Physical Review Letters.27(18):1192-1194. DOI: 10.1017/cbo9780511623998.
[22] E. G. Fan, Y. C. Hon. (2012). Super extension of Bell polynomials with applications to supersymmetric equations. Journal of Mathematical Physics.53(1)-18. DOI: 10.1017/cbo9780511623998.
[23] E. G. Fan. (2011). The integrability of nonisospectral and variable-coefficient KdV equation with binary Bell polynomials. Physics Letters A.375(3):493-497. DOI: 10.1017/cbo9780511623998.
[24] H. W. Yang, D. Z. Yang, Y. L. Shi, S. S. Jin. et al.(2015). Interaction of algebraic Rossby solitary waves with topography and atmospheric blocking. Dynamics of Atmospheres and Oceans.71:21-34. DOI: 10.1017/cbo9780511623998.
[25] R. Hirota. (1973). Exact -soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices. Journal of Mathematical Physics.14:810-814. DOI: 10.1017/cbo9780511623998.
[26] W. X. Ma. (2011). Generalized bilinear differential equations. Studies in Nonlinear Sciences.2(4):140-144. DOI: 10.1017/cbo9780511623998.
[27] F. Lambert, J. Springael. (2008). Soliton equations and simple combinatorics. Acta Applicandae Mathematicae.102(2-3):147-178. DOI: 10.1017/cbo9780511623998.
[28] W.-X. Ma, R. Zhou, L. Gao. (2009). Exact one-periodic and two-periodic wave solutions to Hirota bilinear equations in dimensions. Modern Physics Letters A.24(21):1677-1688. DOI: 10.1017/cbo9780511623998.
[29] A. Nakamura. (1979). A direct method of calculating periodic wave solutions to nonlinear evolution equations. I. Exact two-periodic wave solution. Journal of the Physical Society of Japan.47(5):1701-1705. DOI: 10.1017/cbo9780511623998.
[30] W.-X. Ma, T. W. Huang, Y. Zhang. (2010). A multiple exp-function method for nonlinear differential equations and its application. Physica Scripta.82(6). DOI: 10.1017/cbo9780511623998.
[31] X. Wang, X. Zhang, P. Zhao. (2014). Binary nonlinearization for AKNS-KN coupling system. Abstract and Applied Analysis.2014-12. DOI: 10.1017/cbo9780511623998.
[32] M. Jimbo, T. Miwa. (1983). Solitons and infinite-dimensional Lie algebras. Publications of the Research Institute for Mathematical Sciences.19(3):943-1001. DOI: 10.1017/cbo9780511623998.
[33] Y. L. Song, M. A. Han. (2003). Periodic solutions of periodic delay predator-prey system with nonmonotonic functional response. Journal of Shanghai Jiaotong University.E-8:107-110. DOI: 10.1017/cbo9780511623998.
[34] H. Wang, T. C. Xia. (2014). Bell polynomial approach to an extended Korteweg-de Vries equation. Mathematical Methods in the Applied Sciences.37(10):1476-1487. DOI: 10.1017/cbo9780511623998.
[35] D. H. Luo. (1989). On the Benjamin-Ono equation and its generalization in the atmosphere. Science in China, Series B.32(10):1233-1245. DOI: 10.1017/cbo9780511623998.
[36] Y. H. Wang, Y. Chen. (2013). Binary Bell polynomial manipulations on the integrability of a generalized -dimensional Kortewegõde Vries equation. Journal of Mathematical Analysis and Applications.400(2):624. DOI: 10.1017/cbo9780511623998.
文献评价指标
浏览 113次
下载全文 24次
评分次数 0次
用户评分 0.0分
分享 0次