首页 » 文章 » 文章详细信息
Science and Technology and Nuclear Installations Volume 2016 ,2016-11-10
Development of Vacuum Vessel Design and Analysis Module for CFETR Integration Design Platform
Research Article
Chen Zhu 1 Minyou Ye 1 , 2 Xufeng Liu 2 Shenji Wang 1 Shifeng Mao 1 Zhongwei Wang 2 Yi Yu 1
Show affiliations
DOI:10.1155/2016/5321057
Received 2016-04-15, accepted for publication 2016-08-17, Published 2016-08-17
PDF
摘要

An integration design platform is under development for the design of the China Fusion Engineering Test Reactor (CFETR). It mainly includes the integration physical design platform and the integration engineering design platform. The integration engineering design platform aims at performing detailed engineering design for each tokamak component (e.g., breeding blanket, divertor, and vacuum vessel). The vacuum vessel design and analysis module is a part of the integration engineering design platform. The main idea of this module is to integrate the popular CAD/CAE software to form a consistent development environment. Specifically, the software OPTIMUS provides the approach to integrate the CAD/CAE software such as CATIA and ANSYS and form a design/analysis workflow for the vacuum vessel module. This design/analysis workflow could automate the process of modeling and finite element (FE) analysis for vacuum vessel. Functions such as sensitivity analysis and optimization of geometric parameters have been provided based on the design/analysis workflow. In addition, data from the model and FE analysis could be easily exchanged among different modules by providing a unifying data structure to maintain the consistency of the global design. This paper describes the strategy and methodology of the workflow in the vacuum vessel module. An example is given as a test of the workflow and functions of the vacuum vessel module. The results indicate that the module is a feasible framework for future application.

授权许可

Copyright © 2016 Chen Zhu et al. 2016
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Conceptual workflow of VV module.

CFETR device radial space distribution.

VV workflow in OPTIMUS.

VV CAD model of CFETR.

Geometric elements of upper half cross section of VV.

Main geometric parameters of VV.

Geometric parameters of port cross sections. (a) Cross section of the upper port; (b) cross section of the equatorial port; (c) cross section of the lower port.

Geometric parameters of port cross sections. (a) Cross section of the upper port; (b) cross section of the equatorial port; (c) cross section of the lower port.

Geometric parameters of port cross sections. (a) Cross section of the upper port; (b) cross section of the equatorial port; (c) cross section of the lower port.

通讯作者

Minyou Ye.School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, China, ustc.edu;Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, China, cas.cn.yemy@ustc.edu.cn

推荐引用方式

Chen Zhu,Minyou Ye,Xufeng Liu,Shenji Wang,Shifeng Mao,Zhongwei Wang,Yi Yu. Development of Vacuum Vessel Design and Analysis Module for CFETR Integration Design Platform. Science and Technology and Nuclear Installations ,Vol.2016(2016)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] R. L. Reid, R. J. Barrett, T. G. Brown, G. E. Gorker. et al.(1985). Tokamak Systems Code. DOI: 10.1088/0029-5515/54/4/043018.
[2] C. Reux, L. Di Gallo, F. Imbeaux, J.-F. Artaud. et al.(2015). DEMO reactor design using the new modular system code SYCOMORE. Nuclear Fusion.55(7). DOI: 10.1088/0029-5515/54/4/043018.
[3] M. Kovari, R. Kemp, H. Lux, P. Knight. et al.(2014). PROCESS: a systems code for fusion power plants—part 1: physics. Fusion Engineering and Design.89(12):3054-3069. DOI: 10.1088/0029-5515/54/4/043018.
[4] M. Y. Ye, S. J. Wang, Z. W. Wang, G. Xu. et al.Development of system code of CFETR design. :1-4. DOI: 10.1088/0029-5515/54/4/043018.
[5] A. Saltelli, S. Tarantola, F. Campolongo, M. Ratto. et al.(2004). Sensitivity Analysis in Practice: A Guide to Assessing Scientific Models. DOI: 10.1088/0029-5515/54/4/043018.
[6] G. Falchetto, D. Coster, R. Coelho, B. Scott. et al.(2014). The European Integrated Tokamak Modelling (ITM) effort: achievements and first physics results. Nuclear Fusion.54(4). DOI: 10.1088/0029-5515/54/4/043018.
[7] P. J. Knight. (2013). A User Guide to the PROCESS Systems Code. DOI: 10.1088/0029-5515/54/4/043018.
[8] Noesis Solution NV. (2012). Optimus Rev. 10.13 Theory Manual. DOI: 10.1088/0029-5515/54/4/043018.
[9] S. Liu, M. Chen, M. Lei, M. Lu. et al.(2014). Electromagnetic and structural analysis on vacuum vessel for CFETR during plasma major disruption. Journal of Fusion Energy.33(6):713-719. DOI: 10.1088/0029-5515/54/4/043018.
[10] A. Saltelli, M. Ratto, T. Andres. (2008). Global Sensitivity Analysis: The Primer. DOI: 10.1088/0029-5515/54/4/043018.
[11] Y. Wan. Mission of CFETR. :1-6. DOI: 10.1088/0029-5515/54/4/043018.
[12] Y. T. Song, S. T. Wu, J. G. Li, B. N. Wan. et al.(2014). Concept design of CFETR tokamak machine. IEEE Transactions on Plasma Science.42(3):503-509. DOI: 10.1088/0029-5515/54/4/043018.
[13] R. T. Haftka, Z. Gürdal. (2012). Elements of Structural Optimization.11. DOI: 10.1088/0029-5515/54/4/043018.
[14] D. G. Cacuci, M. Ionescu-Bujor. (2004). A comparative review of sensitivity and uncertainty analysis of large-scale systems-II: statistical methods. Nuclear Science and Engineering.147(3):204-217. DOI: 10.1088/0029-5515/54/4/043018.
[15] J. P. Kleijnen. (2009). Kriging metamodeling in simulation: a review. European Journal of Operational Research.192(3):707-716. DOI: 10.1088/0029-5515/54/4/043018.
[16] American Society of Mechanical Engineers (ASME). (2007). Boiler and Pressure Vessel Code Section III. DOI: 10.1088/0029-5515/54/4/043018.
[17] R. Horst, H. Tuy. (2013). Global Optimization: Deterministic Approaches. DOI: 10.1088/0029-5515/54/4/043018.
[18] ITER Organization. . DOI: 10.1088/0029-5515/54/4/043018.
[19] V. S. Chan, A. E. Costley, B. N. Wan, A. M. Garofalo. et al.(2015). Evaluation of CFETR as a fusion nuclear science facility using multiple system codes. Nuclear Fusion.55(2). DOI: 10.1088/0029-5515/54/4/043018.
[20] R. Storn, K. Price. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization.11(4):341-359. DOI: 10.1088/0029-5515/54/4/043018.
[21] I. M. Sobol'. (1990). On sensitivity estimation for nonlinear mathematical models. Matematicheskoe Modelirovanie.2(1):112-118. DOI: 10.1088/0029-5515/54/4/043018.
文献评价指标
浏览 303次
下载全文 160次
评分次数 0次
用户评分 0.0分
分享 0次