首页 » 文章 » 文章详细信息
Science and Technology and Nuclear Installations Volume 2016 ,2016-09-29
Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves
Research Article
Zhen Qu 1 , 2 Xiaoqin Shen 2 Xiaoshan Cao 1 , 3
Show affiliations
DOI:10.1155/2016/3035180
Received 2016-06-30, accepted for publication 2016-09-07, Published 2016-09-07
PDF
摘要

Subsurface damage could affect the service life of structures. In nuclear engineering, nondestructive evaluation and detection of the evaluation of the subsurface damage region are of great importance to ensure the safety of nuclear installations. In this paper, we propose the use of circumferential horizontal shear (SH) waves to detect mechanical properties of subsurface regions of damage on cylindrical structures. The regions of surface damage are considered to be functionally graded material (FGM) and the cylinder is considered to be a layered structure. The Bessel functions and the power series technique are employed to solve the governing equations. By analyzing the SH waves in the 12Cr-ODS ferritic steel cylinder, which is frequently applied in the nuclear installations, we discuss the relationship between the phase velocities of SH waves in the cylinder with subsurface layers of damage and the mechanical properties of the subsurface damaged regions. The results show that the subsurface damage could lead to decrease of the SH waves’ phase velocity. The gradient parameters, which represent the degree of subsurface damage, can be evaluated by the variation of the SH waves’ phase velocity. Research results of this study can provide theoretical guidance in nondestructive evaluation for use in the analysis of the reliability and durability of nuclear installations.

授权许可

Copyright © 2016 Zhen Qu et al. 2016
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

Structure of the cylinder with surface damage (see [23]).

Comparing the dispersion relation of the SH waves with the different gradient parameter p for Type A.

Comparing the dispersion relation of the SH waves with the different gradient parameter p for Type B.

The influence of gradient parameter on the increment of phase velocity with subsurface damage Type A.

The influence of gradient parameter on the increment of phase velocity with subsurface damage Type B.

通讯作者

Xiaoqin Shen.School of Sciences, Xi’an University of Technology, Xi’an 710054, China, xaut.edu.cn.xqshen@xaut.edu.cn

推荐引用方式

Zhen Qu,Xiaoqin Shen,Xiaoshan Cao. Nondestructive Evaluation of Functionally Graded Subsurface Damage on Cylinders in Nuclear Installations Based on Circumferential SH Waves. Science and Technology and Nuclear Installations ,Vol.2016(2016)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. Liu, X. S. Cao, Z. K. Wang. (2007). Propagation of Love waves in a smart functionally graded piezoelectric composite structure. Smart Materials and Structures.16(1):13-24. DOI: 10.1016/j.jnucmat.2009.10.014.
[2] C. Potel, M. Bruneau, L. C. Foze N'Djomo, D. Leduc. et al.(2015). Shear horizontal acoustic waves propagating along two isotropic solid plates bonded with a non-dissipative adhesive layer: effects of the rough interfaces. Journal of Applied Physics.118(22). DOI: 10.1016/j.jnucmat.2009.10.014.
[3] J. L. Rose. (1999). Ultrasonic Waves in Solid Media. DOI: 10.1016/j.jnucmat.2009.10.014.
[4] Y. Pang, Y. Liu, J. Liu, W. Feng. et al.(2016). Propagation of SH waves in an infinite/semi-infinite piezoelectric/piezomagnetic periodically layered structure. Ultrasonics.67:120-128. DOI: 10.1016/j.jnucmat.2009.10.014.
[5] North Carolina State University. . DOI: 10.1016/j.jnucmat.2009.10.014.
[6] Z. Qian, F. Jin, Z. Wang, K. Kishimoto. et al.(2007). Transverse surface waves on a piezoelectric material carrying a functionally graded layer of finite thickness. International Journal of Engineering Science.45(2-8):455-466. DOI: 10.1016/j.jnucmat.2009.10.014.
[7] Z. B. Yang, B. F. Hu, H. Kinoshita, H. Takahashi. et al.(2010). Effect of hydrogen ion/electron dual-beam irradiation on micro structural damage of a 12Cr-ODS ferrite steel. Journal of Nuclear Materials.398(1–3):81-86. DOI: 10.1016/j.jnucmat.2009.10.014.
[8] M. A. Rana. (2012). Swelling and structure of radiation induced near-surface damage in CR-39 and its chemical etching. Radiation Measurements.47(1):50-56. DOI: 10.1016/j.jnucmat.2009.10.014.
[9] H. Sako, H. Matsuhata, M. Sasaki. (2016). Micro-structural analysis of local damage introduced in subsurface regions of 4H-SiC wafers during chemo-mechanical polishing. Journal of Applied Physics.119(13). DOI: 10.1016/j.jnucmat.2009.10.014.
[10] X. He, G. Wang, H. Zhao, P. Ma. et al.(2016). Subsurface defect characterization and laser-induced damage performance of fused silica optics polished with colloidal silica and ceria. Chinese Physics B.25(4). DOI: 10.1016/j.jnucmat.2009.10.014.
[11] H. N. Li, T. B. Yu, L. D. Zhu, W. S. Wang. et al.(2016). Evaluation of grinding-induced subsurface damage in optical glass BK7. Journal of Materials Processing Technology.229:785-794. DOI: 10.1016/j.jnucmat.2009.10.014.
[12] Z. Jia, Y. Su, B. Niu, B. Zhang. et al.(2016). The interaction between the cutting force and induced sub-surface damage in machining of carbon fiber-reinforced plastics. Journal of Reinforced Plastics and Composites.35(9):712-726. DOI: 10.1016/j.jnucmat.2009.10.014.
[13] Y.-D. Li, T. Xiong, Y. Guan. (2016). Effects of coupled interfacial imperfections on SH wave propagation in a layered multiferroic cylinder. Ultrasonics.66:11-17. DOI: 10.1016/j.jnucmat.2009.10.014.
[14] X. Cao, F. Jin, I. Jeon. (2009). Rayleigh surface wave in a piezoelectric wafer with subsurface damage. Applied Physics Letters.95(26). DOI: 10.1016/j.jnucmat.2009.10.014.
[15] Z. K. Wang, F. Jin. (2002). Influence of curvature on the propagation properties of Rayleigh waves on curved surfaces of arbitrary form. Acta Mechanica Sinica.34(6):895-903. DOI: 10.1016/j.jnucmat.2009.10.014.
[16] J. G. Yu, B. Wu, G. Q. Chen. (2009). Wave characteristics in functionally graded piezoelectric hollow cylinders. Archive of Applied Mechanics.79(9):807-824. DOI: 10.1016/j.jnucmat.2009.10.014.
[17] X. S. Cao, F. Jin, I. Jeon, T. J. Lu. et al.(2009). Propagation of Love waves in a functionally graded piezoelectric material (FGPM) layered composite system. International Journal of Solids and Structures.46(22-23):4123-4132. DOI: 10.1016/j.jnucmat.2009.10.014.
[18] X. Y. Li, Z. K. Wang, S. H. Huang. (2004). Love waves in functionally graded piezoelectric materials. International Journal of Solids and Structures.41(26):7309-7328. DOI: 10.1016/j.jnucmat.2009.10.014.
[19] C. H. Daros. (2010). On modelling SH-waves in a class of inhomogeneous anisotropic media via the boundary element method. ZAMM—Zeitschrift für Angewandte Mathematik und Mechanik.90(2):113-121. DOI: 10.1016/j.jnucmat.2009.10.014.
[20] Y. Kong, J. Liu, G. Nie. (2015). Propagation characteristics of SH wave in an mm2 piezoelectric layer on an elastic substrate. AIP Advances.5(9). DOI: 10.1016/j.jnucmat.2009.10.014.
[21] A. M. Gaur, D. S. Rana. (2015). Dispersion relations for SH waves propagation in a porous piezoelectric (PZT–PVDF) composite structure. Acta Mechanica.226(12):4017-4029. DOI: 10.1016/j.jnucmat.2009.10.014.
[22] D. Paehler, D. Schneider, M. Herben. (2007). Nondestructive characterization of sub-surface damage in rotational ground silicon wafers by laser acoustics. Microelectronic Engineering.84(2):340-354. DOI: 10.1016/j.jnucmat.2009.10.014.
[23] J. Zhu, W. Q. Chen, G. R. Ye, J. Z. Fu. et al.(2013). Waves in fluid-filled functionally graded piezoelectric hollow cylinders: a restudy based on the reverberation-ray matrix formulation. Wave Motion.50(3):415-427. DOI: 10.1016/j.jnucmat.2009.10.014.
文献评价指标
浏览 330次
下载全文 83次
评分次数 0次
用户评分 0.0分
分享 0次