首页 » 文章 » 文章详细信息
Applied and Environmental Soil Science Volume 2014 ,2014-03-16
County-Scale Spatial Variability of Macronutrient Availability Ratios in Paddy Soils
Research Article
Mingkai Qu 1 Weidong Li 2 Chuanrong Zhang 2
Show affiliations
DOI:10.1155/2014/689482
Received 2013-06-22, accepted for publication 2014-01-09, Published 2014-01-09
PDF
摘要

Macronutrients (N, P, and K) are essential to plants but also can be harmful to the environment when their available concentrations in soil are excessive. Availability ratios (available concentration/total concentration) of macronutrients may reflect their transforming potential between fixed and available forms in soil. Understanding their spatial distributions and impact factors can be, therefore, helpful to applying specific measures to modify the availability of macronutrients for agricultural and environmental management purposes. In this study, 636 topsoil samples (0–15 cm) were collected from paddy fields in Shayang County, Central China, for measuring soil properties. Factors influencing macronutrient availability ratios were investigated, and total and available concentrations of macronutrients were mapped using geostatistical method. Spatial distribution maps of macronutrient availability ratios were further derived. Results show that (1) availability of macronutrients is controlled by multiple factors, and (2) macronutrient availability ratios are spatially varied and may not always have spatial patterns identical to those of their corresponding total and available concentrations. These results are more useful than traditional soil macronutrient average content data for guiding site-specific field management for agricultural production and environmental protection.

授权许可

Copyright © 2014 Mingkai Qu et al. 2014
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The study area and sampling sites.

Histograms of TN (a), ln⁡⁡(TP) (b), ln⁡⁡(TK) (c), AN (d), ln⁡⁡(AP) (e), and ln⁡⁡(AK) (f).

Histograms of TN (a), ln⁡⁡(TP) (b), ln⁡⁡(TK) (c), AN (d), ln⁡⁡(AP) (e), and ln⁡⁡(AK) (f).

Histograms of TN (a), ln⁡⁡(TP) (b), ln⁡⁡(TK) (c), AN (d), ln⁡⁡(AP) (e), and ln⁡⁡(AK) (f).

Histograms of TN (a), ln⁡⁡(TP) (b), ln⁡⁡(TK) (c), AN (d), ln⁡⁡(AP) (e), and ln⁡⁡(AK) (f).

Histograms of TN (a), ln⁡⁡(TP) (b), ln⁡⁡(TK) (c), AN (d), ln⁡⁡(AP) (e), and ln⁡⁡(AK) (f).

Histograms of TN (a), ln⁡⁡(TP) (b), ln⁡⁡(TK) (c), AN (d), ln⁡⁡(AP) (e), and ln⁡⁡(AK) (f).

通讯作者

Weidong Li.Department of Geography and Center for Environmental Sciences and Engineering, University of Connecticut, Storrs, CT 06269, USA, uconn.edu.weidongwoody@gmail.com

推荐引用方式

Mingkai Qu,Weidong Li,Chuanrong Zhang. County-Scale Spatial Variability of Macronutrient Availability Ratios in Paddy Soils. Applied and Environmental Soil Science ,Vol.2014(2014)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. D. Cahn, J. W. Hummel, B. H. Brouer. (1994). Spatial analysis of soil fertility for site-specific crop management. Soil Science Society of America Journal.58(4):1240-1248. DOI: 10.1016/j.envpol.2006.04.017.
[2] A. Sharpley. (1995). Identifying sites vulnerable to phosphorus loss in agricultural runoff. Journal of Environmental Quality.24(5):947-951. DOI: 10.1016/j.envpol.2006.04.017.
[3] Agricultural Chemistry Committee of China. (1983). Conventional Methods of Soil and Agricultural Chemistry Analysis (in Chinese). DOI: 10.1016/j.envpol.2006.04.017.
[4] S. W. Huang, J. Y. Jin, L. P. Yang, Y. L. Bai. et al.(2004). Spatial variability of nitrate in cabbage and nitrate-N in soil. Soil Science.169(9):640-649. DOI: 10.1016/j.envpol.2006.04.017.
[5] S. W. Huang, J. Y. Jin, L. P. Yang, Y. L. Bai. et al.(2006). Spatial variability of soil nutrients and influencing factors in a vegetable production area of Hebei Province in China. Nutrient Cycling in Agroecosystems.75(1–3):201-212. DOI: 10.1016/j.envpol.2006.04.017.
[6] M. N. Almasri, J. J. Kaluarachchi. (2004). Assessment and management of long-term nitrate pollution of ground water in agriculture-dominated watersheds. Journal of Hydrology.295(1–4):225-245. DOI: 10.1016/j.envpol.2006.04.017.
[7] H. T. Kim. (2005). Soil Sampling, Preparation, and Analysis. DOI: 10.1016/j.envpol.2006.04.017.
[8] K. W. Holmes, P. C. Kyriakidis, O. A. Chadwick, J. V. Soares. et al.(2005). Multi-scale variability in tropical soil nutrients following land-cover change. Biogeochemistry.74(2):173-203. DOI: 10.1016/j.envpol.2006.04.017.
[9] R. K. Lu. (2000). Analysis Method of Soil and Agricultural Chemistry (in Chinese). DOI: 10.1016/j.envpol.2006.04.017.
[10] R. Corstanje, S. Grunwald, K. R. Reddy, T. Z. Osborne. et al.(2006). Assessment of the spatial distribution of soil properties in a Northern Everglades marsh. Journal of Environmental Quality.35(3):938-949. DOI: 10.1016/j.envpol.2006.04.017.
[11] C. A. Cambardella, T. B. Moorman, J. M. Novak, T. B. Parkin. et al.(1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal.58(5):1501-1511. DOI: 10.1016/j.envpol.2006.04.017.
[12] Y. L. Bai, J. Y. Jin, L. P. Yang, M. Z. Liang. et al.(2001). Research on the subarea management model of soil nutrients by GIS. Scientia Agricultura Sinica.34:46-50. DOI: 10.1016/j.envpol.2006.04.017.
[13] V. H. Smith, G. D. Tilman, J. C. Nekola. (1998). Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environmental Pollution.100(1–3):179-196. DOI: 10.1016/j.envpol.2006.04.017.
[14] D. G. Altman. (1991). Practical Statistics for Medical Research. DOI: 10.1016/j.envpol.2006.04.017.
[15] X. T. Ju, C. L. Kou, P. Christie, Z. X. Dou. et al.(2007). Changes in the soil environment from excessive application of fertilizers and manures to two contrasting intensive cropping systems on the North China Plain. Environmental Pollution.145(2):497-506. DOI: 10.1016/j.envpol.2006.04.017.
[16] Y. Zhao, X. Xu, J. L. Darilek, B. Huang. et al.(2009). Spatial variability assessment of soil nutrients in an intense agricultural area, a case study of Rugao County in Yangtze River Delta Region, China. Environmental Geology.57(5):1089-1102. DOI: 10.1016/j.envpol.2006.04.017.
[17] P. Phupaibul, C. Chitbuntanorm, N. Chinoim, P. Kangyawongha. et al.(2004). Phosphorus accumulation in soils and nitrate contamination in underground water under export-oriented asparagus farming in Nong Ngu Lauem Village, Nakhon Pathom Province, Thailand. Soil Science and Plant Nutrition.50(3):385-393. DOI: 10.1016/j.envpol.2006.04.017.
[18] Y. C. Wei, Y. L. Bai, J. Y. Jin, F. Zhang. et al.(2009). Spatial variability of soil chemical properties in the reclaiming marine foreland to yellow sea of China. Agricultural Sciences in China.8(9):1103-1111. DOI: 10.1016/j.envpol.2006.04.017.
[19] R. Webster, M. A. Oliver. (1990). Statistical Methods in Soil and Land Resource Survey. DOI: 10.1016/j.envpol.2006.04.017.
[20] T. J. Sauer, D. W. Meek. (2003). Spatial variation of plant-available phosphorus in pastures with contrasting management. Soil Science Society of America Journal.67(3):826-836. DOI: 10.1016/j.envpol.2006.04.017.
[21] J.-P. Chiles, P. Delfiner. (1999). Geostatistics: Modeling Spatial Uncertainty. DOI: 10.1016/j.envpol.2006.04.017.
[22] X. Y. Zhang, Z. Y. Ling, T. Y. Zhong, K. Wang. et al.(2011). Simulation of the availability index of soil copper content using general regression neural network. Environmental Earth Sciences.64(7):1697-1702. DOI: 10.1016/j.envpol.2006.04.017.
[23] B. Huang, W. X. Sun, Y. C. Zhao, J. Zhu. et al.(2007). Temporal and spatial variability of soil organic matter and total nitrogen in an agricultural ecosystem as affected by farming practices. Geoderma.139(3-4):336-345. DOI: 10.1016/j.envpol.2006.04.017.
[24] J. G. White, R. J. Zasoski. (1999). Mapping soil micronutrients. Field Crops Research.60(1-2):11-26. DOI: 10.1016/j.envpol.2006.04.017.
[25] Y. Chen, B. H. He, X. L. Zhao, L. Zhang. et al.(2010). Effect of soil erosion and water loss in Farmland on water eutrophication in Xiaojiang River Basin. Journal of Soil and Water Conservation.24:31-43. DOI: 10.1016/j.envpol.2006.04.017.
[26] C. F. Wu, Y. M. Luo, L. M. Zhang. (2010). Variability of copper availability in paddy fields in relation to selected soil properties in southeast China. Geoderma.156(3-4):200-206. DOI: 10.1016/j.envpol.2006.04.017.
[27] H. Marschner. (1995). Mineral Nutrition of Higher Plants. DOI: 10.1016/j.envpol.2006.04.017.
文献评价指标
浏览 281次
下载全文 58次
评分次数 0次
用户评分 0.0分
分享 0次