首页 » 文章 » 文章详细信息
Advances in Astronomy Volume 2016 ,2016-06-15
The Photometric Investigation of V921 Her Using the Lunar-Based Ultraviolet Telescope of Chang’e-3 Mission
Research Article
Xiao Zhou 1 Sheng-Bang Qian 1 Jia Zhang 1 Lin-Jia Li 1 Qi-Shan Wang 1
Show affiliations
DOI:10.1155/2016/7468976
Received 2016-01-06, accepted for publication 2016-05-17, Published 2016-05-17
PDF
摘要

The light curve of V921 Her in ultraviolet band observed by the Lunar-based Ultraviolet Telescope (LUT) is analyzed by the Wilson-Devinney code. Our solutions conclude that V921 Her is an early type marginal contact binary system with an additional close-in component. The binary system is under poor thermal contact with a temperature difference of nearly 700 K between the two components. The close-in component contributes about 19% of the total luminosity in the triple system. Combining the radial velocity study together with our photometric solutions, the mass of the primary star and secondary one is calculated to be M 1 = 1.784     ( ± 0.055 ) M ⊙ , M 2 = 0.403     ( ± 0.012 ) M ⊙ . The evolutionary scenario of V921 Her is discussed. All times of light minimum of V921 Her available in the bibliography are taken into account and the O - C curve is analyzed for the first time. The most probable fitting results are discussed in the paper, which also confirm the existence of a third component ( P 3 = 10.2 year) around the binary system. The period of V921 Her is also undergoing a continuously rapid increase at a rate of d P / d t = + 2.79 × 1 0 - 7     d a y · y e a r - 1 , which may be due to mass transfer from the less massive component to the more massive one.

授权许可

Copyright © 2016 Xiao Zhou et al. 2016
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

图表

The ( O - C ) 1 values of V921 Her from the linear ephemeris of (2) are presented in (a). The solid line in the panel refers to the combination of an upward parabolic variation and a cyclic change. The dashed line represents the upward parabolic variation which reveals a continuous increase in the orbital period. In (b), the ( O - C ) 2 values with the quadratic part in (3) removed are displayed, where a cyclic change is more clear to be seen. After both the parabolic change and the cyclic variation are removed, the residuals are plotted in (c).

The ( O - C ) 1 values of V921 Her from the linear ephemeris of (2) are presented in (a). The solid line in the panel refers to the combination of an upward parabolic variation and a cyclic change. The dashed line represents the upward parabolic variation which reveals a continuous increase in the orbital period. In (b), the ( O - C ) 2 values with the quadratic part in (3) removed are displayed, where a cyclic change is more clear to be seen. After both the parabolic change and the cyclic variation are removed, the residuals are plotted in (c).

The ( O - C ) 1 values of V921 Her from the linear ephemeris of (2) are presented in (a). The solid line in the panel refers to the combination of an upward parabolic variation and a cyclic change. The dashed line represents the upward parabolic variation which reveals a continuous increase in the orbital period. In (b), the ( O - C ) 2 values with the quadratic part in (3) removed are displayed, where a cyclic change is more clear to be seen. After both the parabolic change and the cyclic variation are removed, the residuals are plotted in (c).

The observed (open circles) and theoretical (solid line) light curve of V921 Her. Theoretical light curve without being contaminated by the third light is plotted with dashed line (Mode 3).

Geometrical structure of V921 Her at phase 0.25.

The relationship between i ′ and M 3 (a). The relationship between i ′ and a 3 (b).

The relationship between i ′ and M 3 (a). The relationship between i ′ and a 3 (b).

通讯作者

Xiao Zhou.Yunnan Observatories, Chinese Academy of Sciences (CAS), P.O. Box 110, Kunming 650216, China, cas.cn.zhouxiaophy@ynao.ac.cn

推荐引用方式

Xiao Zhou,Sheng-Bang Qian,Jia Zhang,Lin-Jia Li,Qi-Shan Wang. The Photometric Investigation of V921 Her Using the Lunar-Based Ultraviolet Telescope of Chang’e-3 Mission. Advances in Astronomy ,Vol.2016(2016)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] K. Karami, K. Ghaderi, R. Mohebi, R. Sadeghi. et al.(2009). Velocity curve analysis of the spectroscopic binary stars RZ Cas, CC Cas, HS Her, HD 93917, V921 Her and Y Cygni by the artificial neural networks. Astronomische Nachrichten.330(8):836-842. DOI: 10.1088/1674-4527/14/12/001.
[2] W. Van Hamme. (1993). New limb-darkening coefficients for modeling binary star light curves. Astronomical Journal.106(5):2096-2117. DOI: 10.1088/1674-4527/14/12/001.
[3] S.-B. Qian, X. Zhou, S. Zola, L.-Y. Zhu. et al.(2014). AL cassiopeiae: an F-type contact binary system with a cool stellar companion. Astronomical Journal.148(5, article 79). DOI: 10.1088/1674-4527/14/12/001.
[4] S. Csizmadia, P. Klagyivik. (2004). On the properties of contact binary stars. Astronomy and Astrophysics.426(3):1001-1005. DOI: 10.1088/1674-4527/14/12/001.
[5] A. Tokovinin, S. Thomas, M. Sterzik, S. Udry. et al.(2006). Tertiary companions to close spectroscopic binaries. Astronomy and Astrophysics.450(2):681-693. DOI: 10.1088/1674-4527/14/12/001.
[6] ESA. (1997). The Hipparcos and Tycho Catalogues.1200. DOI: 10.1088/1674-4527/14/12/001.
[7] R. H. Nelson. (2005). CCD Minima for Selected Eclipsing Binaries in 2004. DOI: 10.1088/1674-4527/14/12/001.
[8] L. Brát, J. Trnka, L. Smelcer. (2011). B.R.N.O. contributions #37—times of minima. Open European Journal on Variable Stars.137:1. DOI: 10.1088/1674-4527/14/12/001.
[9] L. B. Lucy. (1976). W Ursae Majoris systems with marginal contact. Astrophysical Journal.205:208-216. DOI: 10.1088/1674-4527/14/12/001.
[10] W.-H. Ip, J. Yan, C.-L. Li, Z.-Y. Ouyang. et al.(2014). Preface: the Chang′e-3 lander and rover mission to the Moon. Research in Astronomy and Astrophysics.14(12):1511. DOI: 10.1088/1674-4527/14/12/001.
[11] J. B. Irwin. (1952). The determination of a light-time orbit. The Astrophysical Journal.116:211. DOI: 10.1088/1674-4527/14/12/001.
[12] T. Pribulla, S. M. Ruciński. (2006). Contact binaries with additional components. I. The extant data. The Astronomical Journal.131(6):2986-3007. DOI: 10.1088/1674-4527/14/12/001.
[13] B. P. Flannery. (1976). A cyclic thermal instability in contact binary stars. Astrophysical Journal.205:217-225. DOI: 10.1088/1674-4527/14/12/001.
[14] X.-M. Meng, L. Cao, Y.-L. Qiu. (2015). Data processing pipeline for pointing observations of Lunar-based Ultraviolet Telescope. Astrophysics & Space Science.358, article 47. DOI: 10.1088/1674-4527/14/12/001.
[15] J. Wang, L. Cao, X.-M. Meng, H.-B. Cai. et al.(2015). Photometric calibration of the Lunar-based Ultraviolet Telescope for its first six months of operation on the Lunar surface. Research in Astronomy and Astrophysics.15(7):1068-1076. DOI: 10.1088/1674-4527/14/12/001.
[16] S. W. Dvorak. (2005). Times of minima for neglected eclipsing binaries in 2004. Information Bulletin on Variable Stars(5603):1. DOI: 10.1088/1674-4527/14/12/001.
[17] R. E. Wilson, E. J. Devinney. (1971). Realization of accurate close-binary light curves: application to MR cygni. The Astrophysical Journal.166:605. DOI: 10.1088/1674-4527/14/12/001.
[18] K. K. Kwee, H. van Woerden. (1956). A method for computing accurately the epoch of minimum of an eclipsing variable. Bulletin of the Astronomical Institutes of the Netherlands.12:327. DOI: 10.1088/1674-4527/14/12/001.
[19] T. Krajci. (2007). Photoelectric minima of some eclipsing binary stars. Information Bulletin on Variable Stars(5806):1-3. DOI: 10.1088/1674-4527/14/12/001.
[20] R. E. Wilson. (1990). Accuracy and efficiency in the binary star reflection effect. The Astrophysical Journal.356:613-622. DOI: 10.1088/1674-4527/14/12/001.
[21] W.-P. Liao, S.-B. Qian. (2010). The most plausible explanation of the cyclic period changes in close binaries: the case of the RS CVn-type binary WW Dra. Monthly Notices of the Royal Astronomical Society.405(3):1930-1939. DOI: 10.1088/1674-4527/14/12/001.
[22] C. D'Angelo, M. H. Van Kerkwijk, S. M. Ruciński. (2006). Contact binaries with additional components. II. A spectroscopic search for faint tertiaries. Astronomical Journal.132(2):650-662. DOI: 10.1088/1674-4527/14/12/001.
[23] S. M. Rucinski, C. C. Capobianco, W. Lu, H. DeBond. et al.(2003). Radial velocity studies of close binary stars. VIII. The Astronomical Journal.125(6):3258-3264. DOI: 10.1088/1674-4527/14/12/001.
[24] K. Karami, R. Mohebi. (2007). Velocity curve analysis of the spectroscopic binary stars PV pup, HD 141929, EE cet and V921 her by nonlinear regression. Journal of Astrophysics and Astronomy.28(4):217-230. DOI: 10.1088/1674-4527/14/12/001.
[25] L. B. Lucy, R. E. Wilson. (1979). Observational tests of theories of contact binaries. The Astrophysical Journal.231:502-513. DOI: 10.1088/1674-4527/14/12/001.
[26] R. H. Nelson. (2007). CCD minima for selected eclipsing binaries in 2006. Information Bulletin on Variable Stars. DOI: 10.1088/1674-4527/14/12/001.
[27] J. A. Robertson, P. P. Eggleton. (1977). The evolution of W Ursae Majoris systems. Monthly Notices of the Royal Astronomical Society.179(3):359-375. DOI: 10.1088/1674-4527/14/12/001.
[28] R. E. Wilson, W. Van Hamme, D. Terrell. (2010). Flux calibrations from nearby eclipsing binaries and single stars. The Astrophysical Journal.723(2):1469-1492. DOI: 10.1088/1674-4527/14/12/001.
[29] L. B. Lucy. (1967). Gravity-darkening for stars with convective envelopes. Zeitschrift für Astrophysik.65:89. DOI: 10.1088/1674-4527/14/12/001.
[30] S. Marshall, C. Akerlof, R. Kehoe. (1997). The ROTSE project. Bulletin of the American Astronomical Society.29:1290. DOI: 10.1088/1674-4527/14/12/001.
[31] K. D. Gazeas, P. G. Niarchos, S. Zola, J. M. Kreiner. et al.(2006). Physical parameters of components in close binary systems: VI. Acta Astronomica.56(1):127-143. DOI: 10.1088/1674-4527/14/12/001.
[32] A. N. Cox. (2000). Allen's Astrophysical Quantities. DOI: 10.1088/1674-4527/14/12/001.
[33] T. Pribulla, D. Baludansky, D. Chochol. (2005). New minima of selected eclipsing close binaries. Information Bulletin on Variable Stars(5898):1. DOI: 10.1088/1674-4527/14/12/001.
[34] S. M. Ruciński. (1969). The proximity effects in close binary systems. II. The bolometric reflection effect for stars with deep convective envelopes. Acta Astronomica.19:245. DOI: 10.1088/1674-4527/14/12/001.
[35] L. Brát, M. Zejda, P. Svoboda. (2007). B.R.N.O. Contributions #34. Open European Journal on Variable Stars.74(1):1. DOI: 10.1088/1674-4527/14/12/001.
[36] S. W. Dvorak. (2011). Times of minima for eclipsing binaries 2010. Information Bulletin on Variable Stars(5974):1. DOI: 10.1088/1674-4527/14/12/001.
[37] O. Pejcha. (2005). CCD times of minima of several eclipsing binaries. Information Bulletin on Variable Stars.5645:1. DOI: 10.1088/1674-4527/14/12/001.
[38] R. H. Nelson. (2011). V456 CYG—a detached eclipsing binary. Information Bulletin on Variable Stars.5994:1-4. DOI: 10.1088/1674-4527/14/12/001.
文献评价指标
浏览 327次
下载全文 61次
评分次数 0次
用户评分 0.0分
分享 0次